Skip to main content

Development and Preservation of Avian Sperm

  • Chapter
  • First Online:
Book cover Avian Reproduction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1001))

Abstract

Terminally differentiated avian sperm consist of a head which male genetic material locates and flagellum that provides the motive force to propel them towards the fertilization site. The apical end of the sperm head accommodates a secretory vesicle, called an acrosome, that undergoes acrosome reaction releasing proteolytic content to penetrate the peri-vitelline membrane of an egg. Transcriptionally and translationally inactive, sperm need to rely on these distinct compartments in which different functions are preassembled, in order to achieve the goal of “fertilization”. How are these complex structures with high functionality formed? Spermatogenesis is divided into an early stage in which diploid spermatogonia is proliferated into round spermatids thorough mitotic and meiotic divisions, and a late stage in which round spermatids are transformed into sperm though nuclear condensation and elongation of the sperm head, and formation of accessory structures. Recently, it was reported in aves that morphologically differentiated sperm undergo post-testicular maturation during passage through the male genital tract, suggesting that a similar system to mammals might be involved in the acquisition of fertilizing ability in avian sperm. Investigation for mechanisms underlying how sperm regulate their functions which are necessary to achieve fertilization is important for developing reproductive biotechnology in aves, because cryopreservation of poultry sperm is still not reliable for use in commercial production or for the preservation of genetic resources. In this review, we firstly provide an update on avian spermatogenesis, and then discuss the uniqueness of structure and functions of avian sperm, highlighting differences from mammalian sperm. Lastly, we discuss the molecular mechanism and current techniques of cryopreservation for avian sperm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-haila A, Tulsiani DRP. Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys. 2009;485(1):72–81. doi:10.1016/j.abb.2009.02.003.

    Article  CAS  PubMed  Google Scholar 

  • Ahammad MU, Nishino C, Tatemoto H, Okura N, Kawamoto Y, Okamoto S, Nakada T. Maturational changes in motility, acrosomal proteolytic activity, and penetrability of the inner perivitelline layer of fowl sperm, during their passage through the male genital tract. Theriogenology. 2011a;76(6):1100–9. doi:10.1016/j.theriogenology.2011.05.017.

    Article  CAS  PubMed  Google Scholar 

  • Ahammad MU, Nishino C, Tatemoto H, Okura N, Kawamoto Y, Okamoto S, Nakada T. Maturational changes in the survivability and fertility of fowl sperm during their passage through the male reproductive tract. Anim Reprod Sci. 2011b;128(1–4):129–36. doi:10.1016/j.anireprosci.2011.09.010.

    Article  PubMed  Google Scholar 

  • Ahammad MU, Nishino C, Tatemoto H, Okura N, Okamoto S, Kawamoto Y, Nakada T. Acrosome reaction of fowl sperm: evidence for shedding of the acrosomal cap in intact form to release acrosomal enzyme. Poult Sci. 2013;92(3):798–803. doi:10.3382/ps.2012-02523.

    Article  CAS  PubMed  Google Scholar 

  • Aire TA. Ultrastructural study of spermiogenesis in the turkey, Meleagris gallopavo. Br Poult Sci. 2003;44(5):674–82. doi:10.1080/00071660310001643651.

    Article  CAS  PubMed  Google Scholar 

  • Aire TA. Spermiogenesis in birds. Spermatogenesis. 2014;4(3):e959392. doi:10.4161/21565554.2014.959392.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amann R. Sperm production rates. In: Johnson AD, Gomes WR, Vandemark NL, editors. The testis, vol. 1. New York: Academic Press; 1970. p. 433–82.

    Google Scholar 

  • Amaral A, Lourenco B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction. 2013;146(5):R163–74. doi:10.1530/REP-13-0178.

    Article  CAS  PubMed  Google Scholar 

  • Asano A, Nelson-Harrington JL, Travis AJ. Phospholipase B is activated in response to sterol removal and stimulates acrosome exocytosis in murine sperm. J Biol Chem. 2013;288(39):28104–15. doi:10.1074/jbc.M113.450981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano A, Kanbe H, Ushiyama A, Tajima A. Organization of membrane rafts in chicken sperm. J Poult Sci. 2016;53(3):233–9.

    Article  CAS  Google Scholar 

  • Ashizawa K, Katayama S, Tsuzuki Y. Regulation of flagellar motility by temperature-dependent phosphorylation of a 43 kDa axonemal protein in fowl spermatozoa. Biochem Biophys Res Commun. 1992;185(2):740–5. doi:10.1016/0006-291X(92)91688-M.

    Article  CAS  PubMed  Google Scholar 

  • Ashizawa K, Katayama S, Kobayashi T, Tsuzuki Y. Possible role of protein kinase C in regulation of flagellar motility and intracellular free Ca2+ concentration of fowl spermatozoa. J Reprod Fertil. 1994a;101(3):511–7.

    Article  CAS  PubMed  Google Scholar 

  • Ashizawa K, Tomonaga H, Tsuzuki Y. Regulation of flagellar motility of fowl spermatozoa: evidence for the involvement of intracellular free Ca2+ and calmodulin. J Reprod Fertil. 1994b;101(2):265–72.

    Article  CAS  PubMed  Google Scholar 

  • Ashizawa K, Wishart GJ, Tomonaga H, Nishinakama K, Tsuzuki Y. Presence of protein phosphatase type 1 and its involvement in temperature-dependent flagellar movement of fowl spermatozoa. FEBS Lett. 1994c;350(1):130–4.

    Article  CAS  PubMed  Google Scholar 

  • Ashizawa K, Wishart GJ, Ranasinghe ARAH, Katayama S, Tsuzuki Y. Protein phosphatase-type 2B is involved in the regulation of the acrosome reaction but not in the temperature-dependent flagellar movement of fowl spermatozoa. Reproduction. 2004;128(6):783–7. doi:10.1530/rep.1.00327.

    Article  CAS  PubMed  Google Scholar 

  • Ashizawa K, Wishart GJ, Katayama S, Takano D, Ranasinghe AR, Narumi K, Tsuzuki Y. Regulation of acrosome reaction of fowl spermatozoa: evidence for the involvement of protein kinase C and protein phosphatase-type 1 and/or -type 2A. Reproduction. 2006;131(6):1017–24. doi:10.1530/rep.1.01069.

    Article  CAS  PubMed  Google Scholar 

  • Ashizawa K, Omura Y, Katayama S, Tatemoto H, Narumi K, Tsuzuki Y. Intracellular signal transduction pathways in the regulation of fowl sperm motility: evidence for the involvement of phosphatidylinositol 3-kinase (PI3-K) cascade. Mol Reprod Dev. 2009;76(7):603–10. doi:10.1002/mrd.20995.

    Article  CAS  PubMed  Google Scholar 

  • Austin CR. Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B. 1951;4:581–96.

    Article  CAS  PubMed  Google Scholar 

  • Blanco JM, Long JA, Gee G, Wildt DE, Donoghue AM. Comparative cryopreservation of avian spermatozoa: benefits of non-permeating osmoprotectants and ATP on turkey and crane sperm cryosurvival. Anim Reprod Sci. 2011;123(3–4):242–8. doi:10.1016/j.anireprosci.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  • Blesbois E. Current status in avian semen cryopreservation. Worlds Poult Sci J. 2007;63:213–22.

    Article  Google Scholar 

  • Burgos MH, Fawcett DW. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol. 1955;1(4):287–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Clapham DE. Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: catspers and catsper? PLoS One. 2008;3(10):e3569. doi:10.1371/journal.pone.0003569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 1951;168(4277):697–8.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury AK, Steinberger E. A study of germ cell morphology and duration of spermatogenic cycle in the baboon, Papio anubis. Anat Rec. 1976;185(2):155–69. doi:10.1002/ar.1091850204.

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y. The cycle of the seminiferous epithelium in man. Am J Anat. 1963;112:35–51. doi:10.1002/aja.1001120103.

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Antar M. Duration of the cycle of the seminiferous epithelium and the spermatogonial renewal in the monkey Macaca arctoides. Am J Anat. 1973;136(2):153–65. doi:10.1002/aja.1001360204.

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Bustos-Obregon E. Re-examination of spermatogonial renewal in the rat by means of seminiferous tubules mounted “in toto”. Am J Anat. 1968;122(2):237–47. doi:10.1002/aja.1001220205.

    Article  CAS  PubMed  Google Scholar 

  • Cornwall GA, Hann SR. Specialized gene expression in the epididymis. J Androl. 1995;16(5):379–83.

    CAS  PubMed  Google Scholar 

  • Cross NL. Effect of methyl-beta-cyclodextrin on the acrosomal responsiveness of human sperm. Mol Reprod Dev. 1999;53(1):92–8. doi:10.1002/(SICI)1098-2795(199905)53:1<92::AID-MRD11>3.0.CO;2-Q.

    Article  CAS  PubMed  Google Scholar 

  • Davis BK. Influence of serum albumin on the fertilizing ability in vitro of rat spermatozoa. Proc Soc Exp Biol Med. 1976;151(2):240–3.

    Article  CAS  PubMed  Google Scholar 

  • Donoghuea AM, Wishart GJ. Storage of poultry semen. Anim Reprod Sci. 2000;62(1–3):213–32.

    Article  CAS  PubMed  Google Scholar 

  • Esponda P, Bedford JM. Surface of the rooster spermatozoon changes in passing through the Wolffian duct. J Exp Zool. 1985;234(3):441–9. doi:10.1002/jez.1402340311.

    Article  CAS  PubMed  Google Scholar 

  • Froman DP, Feltmann AJ. Sperm mobility: a quantitative trait of the domestic fowl (Gallus domesticus). Biol Reprod. 1998;58(2):379–84.

    Article  CAS  PubMed  Google Scholar 

  • Graham EF, Nelson DS, Schmehl MK. Development of extender and techniques for frozen turkey semen. 1. Development. Poult Sci. 1982a;61(3):550–7.

    Article  CAS  PubMed  Google Scholar 

  • Graham EF, Nelson DS, Schmehl MK. Development of extender and techniques for frozen turkey semen. 2. Fertility trials. Poult Sci. 1982b;61(3):558–63.

    Article  CAS  PubMed  Google Scholar 

  • Gunawardana VK, Scott MG. Ultrastructural studies on the differentiation of spermatids in the domestic fowl. J Anat. 1977;124(Pt 3):741–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadley MA, Dym M. Spermatogenesis in the vasectomized monkey: quantitative analysis. Anat Rec. 1983;205(4):381–6. doi:10.1002/ar.1092050403.

    Article  CAS  PubMed  Google Scholar 

  • Howarth B Jr. An examination for sperm capacitation in the fowl. Biol Reprod. 1970;3(3):338–41.

    Article  PubMed  Google Scholar 

  • Howarth B Jr. Fertilizing ability of cock spermatozoa from the testis epididymis and vas deferens following intramagnal insemination. Biol Reprod. 1983;28(3):586–90.

    Article  PubMed  Google Scholar 

  • Hurtado de Llera A, Martin-Hidalgo D, Gil MC, Garcia-Marin LJ, Bragado MJ. The calcium/CaMKKalpha/beta and the cAMP/PKA pathways are essential upstream regulators of AMPK activity in boar spermatozoa. Biol Reprod. 2014;90(2):29. doi:10.1095/biolreprod.113.112797.

    Article  PubMed  CAS  Google Scholar 

  • Iaffaldano N, Romagnoli L, Manchisi A, Rosato MP. Cryopreservation of turkey semen by the pellet method: effects of variables such as the extender, cryoprotectant concentration, cooling time and warming temperature on sperm quality determined through principal components analysis. Theriogenology. 2011;76(5):794–801. doi:10.1016/j.theriogenology.2011.04.012.

    Article  CAS  PubMed  Google Scholar 

  • Iborra A, Companyo M, Martinez P, Morros A. Cholesterol efflux promotes acrosome reaction in goat spermatozoa. Biol Reprod. 2000;62(2):378–83.

    Article  CAS  PubMed  Google Scholar 

  • Ishii H, Mori T, Shiratsuchi A, Nakai Y, Shimada Y, Ohno-Iwashita Y, Nakanishi Y. Distinct localization of lipid rafts and externalized phosphatidylserine at the surface of apoptotic cells. Biochem Biophys Res Commun. 2005;327(1):94–9. doi:10.1016/j.bbrc.2004.11.135.

    Article  CAS  PubMed  Google Scholar 

  • Jones R. Plasma membrane structure and remodelling during sperm maturation in the epididymis. J Reprod Fertil Suppl. 1998;53:73–84.

    CAS  PubMed  Google Scholar 

  • Jones RC, Lin M. Spermatogenesis in birds. Oxf Rev Reprod Biol. 1993;15:233–64.

    CAS  PubMed  Google Scholar 

  • Khalil MB, Chakrabandhu K, Xu H, Weerachatyanukul W, Buhr M, Berger T, Carmona E, Vuong N, Kumarathasan P, Wong PTT, Carrier D, Tanphaichitr N. Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev Biol. 2006;290(1):220–35. doi:10.1016/j.ydbio.2005.11.030.

    Article  CAS  Google Scholar 

  • Korn N, Thurston RJ, Pooser BP, Scott TR. Ultrastructure of spermatozoa from Japanese quail. Poult Sci. 2000;79(3):407–14.

    Article  CAS  PubMed  Google Scholar 

  • Lake PE, Ravie O, McAdam J. Preservation of fowl semen in liquid nitrogen: application to breeding programmes. Br Poult Sci. 1981;22(1):71–7. doi:10.1080/00071688108447865.

    Article  CAS  PubMed  Google Scholar 

  • Leblond CP, Clermont Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid–fuchsin sulfurous acid technique. Am J Anat. 1952;90(2):167–215. doi:10.1002/aja.1000900202.

    Article  CAS  PubMed  Google Scholar 

  • Lemoine M, Grasseau I, Brillard JP, Blesbois E. A reappraisal of the factors involved in in-vitro initiation of the acrosome reaction in chicken spermatozoa. Reproduction. 2008;136(4):391–9. doi:10.1530/REP-08-0094.

    Article  CAS  PubMed  Google Scholar 

  • Lemoine M, Dupont J, Guillory V, Tesseraud S, Blesbois E. Potential involvement of several signaling pathways in initiation of the chicken acrosome reaction. Biol Reprod. 2009;81(4):657–65. doi:10.1095/biolreprod.108.072660.

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Jones RC. Renewal and proliferation of spermatogonia during spermatogenesis in the Japanese quail, Coturnix coturnix japonica. Cell Tissue Res. 1992;267(3):591–601.

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Jones RC, Blackshaw AW. The cycle of the seminiferous epithelium in the Japanese quail (Coturnix coturnix japonica) and estimation of its duration. J Reprod Fertil. 1990;88(2):481–90.

    Article  CAS  PubMed  Google Scholar 

  • Long JA. Avian semen cryopreservation: what are the biological challenges? Poult Sci. 2006;85(2):232–6.

    Article  CAS  PubMed  Google Scholar 

  • Long JA, Purdy PH, Zuidberg K, Hiemstra SJ, Velleman SG, Woelders H. Cryopreservation of turkey semen: effect of breeding line and freezing method on post-thaw sperm quality, fertilization, and hatching. Cryobiology. 2014;68(3):371–8. doi:10.1016/j.cryobiol.2014.04.003.

    Article  CAS  PubMed  Google Scholar 

  • Majhi RK, Kumar A, Yadav M, Kumar P, Maity A, Giri SC, Goswami C. Light and electron microscopic study of mature spermatozoa from White Pekin duck (Anas platyrhynchos): an ultrastructural and molecular analysis. Andrology. 2016;4(2):232–44. doi:10.1111/andr.12130.

    Article  CAS  PubMed  Google Scholar 

  • Means AR, Tash JS, Chafouleas JG. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev. 1982;62(1):1–39.

    CAS  PubMed  Google Scholar 

  • Mocé E, Grasseau I, Blesbois E. Cryoprotectant and freezing-process alter the ability of chicken sperm to acrosome react. Anim Reprod Sci. 2010;122(3–4):359–66. doi:10.1016/j.anireprosci.2010.10.010.

    Article  PubMed  CAS  Google Scholar 

  • Moghbeli M, Kohram H, Zare-Shahaneh A, Zhandi M, Sharafi M, Nabi MM, Zahedi V, Sharideh H. Are the optimum levels of the catalase and vitamin E in rooster semen extender after freezing–thawing influenced by sperm concentration? Cryobiology. 2016; doi:10.1016/j.cryobiol.2016.03.008.

  • Morris SA, Howarth B Jr, Crim JW, Rodriguez de Cordoba A, Esponda P, Bedford JM. Specificity of sperm-binding Wolffian duct proteins in the rooster and their persistence on spermatozoa in the female host glands. J Exp Zool. 1987;242(2):189–98. doi:10.1002/jez.1402420210.

    Article  CAS  PubMed  Google Scholar 

  • Morton BE, Sagadraca R, Fraser C. Sperm motility within the mammalian epididymis: species variation and correlation with free calcium levels in epididymal plasma. Fertil Steril. 1978;29(6):695–8.

    Article  CAS  PubMed  Google Scholar 

  • Nagano T. Observations on the fine structure of the developing spermatid in the domestic chicken. J Cell Biol. 1962;14:193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TM, Alves S, Grasseau I, Metayer-Coustard S, Praud C, Froment P, Blesbois E. Central role of 5′-AMP-activated protein kinase in chicken sperm functions. Biol Reprod. 2014;91(5):121. doi:10.1095/biolreprod.114.121855.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TM, Combarnous Y, Praud C, Duittoz A, Blesbois E. Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) effects on AMP-activated protein kinase (AMPK) regulation of chicken sperm functions. PLoS One. 2016;11(1):e0147559. doi:10.1371/journal.pone.0147559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nixon B, Ewen KA, Krivanek KM, Clulow J, Kidd G, Ecroyd H, Jones RC. Post-testicular sperm maturation and identification of an epididymal protein in the Japanese quail (Coturnix coturnix japonica). Reproduction. 2014;147(3):265–77. doi:10.1530/REP-13-0566.

    Article  CAS  PubMed  Google Scholar 

  • Noirault J, Brillard J-P, Bakst MR. Effect of various photoperiods on testicular weight, weekly sperm output and plasma levels of LH and testosterone over the reproductive season in male turkeys. Theriogenology. 2006;66(4):851–9. doi:10.1016/j.theriogenology.2005.11.025.

    Article  CAS  PubMed  Google Scholar 

  • Oderkirk AHF, Buckland RB. A comparison of diluents and cryopreservatives for freezing Turkey semen. Poult Sci. 1977;56(6):1861–7. doi:10.3382/ps.0561861.

    Article  CAS  Google Scholar 

  • Okamura F, Nishiyama H. The early development of the tail and the transformation of the shape of the nucleus of the spermatid of the domestic fowl, Gallus gallus. Cell Tissue Res. 1976;169(3):345–59. doi:10.1007/BF00219607.

    Article  CAS  PubMed  Google Scholar 

  • Oko R, Clermont Y. Isolation, structure and protein composition of the perforatorium of rat spermatozoa. Biol Reprod. 1988;39(3):673–87.

    Article  CAS  PubMed  Google Scholar 

  • Oko R, Morales CR. A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca. Dev Biol. 1994;166(1):235–45. doi:10.1006/dbio.1994.1310.

    Article  CAS  PubMed  Google Scholar 

  • Oko R, Moussakova L, Clermont Y. Regional differences in composition of the perforatorium and outer periacrosomal layer of the rat spermatozoon as revealed by immunocytochemistry. Am J Anat. 1990;188(1):64–73. doi:10.1002/aja.1001880108.

    Article  CAS  PubMed  Google Scholar 

  • Partyka A, Nizanski W, Bajzert J, Lukaszewicz E, Ochota M. The effect of cysteine and superoxide dismutase on the quality of post-thawed chicken sperm. Cryobiology. 2013;67(2):132–6. doi:10.1016/j.cryobiol.2013.06.002.

    Article  CAS  PubMed  Google Scholar 

  • du Plessis L, Soley JT. A re-evaluation of sperm ultrastructure in the emu, Dromaius novaehollandiae. Theriogenology. 2014;81(8):1073–84. doi:10.1016/j.theriogenology.2014.01.034.

    Article  PubMed  Google Scholar 

  • du Plessis SS, Agarwal A, Mohanty G, van der Linde M. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl. 2015;17(2):230–5. doi:10.4103/1008-682X.135123.

    Article  PubMed  CAS  Google Scholar 

  • Polge C. Functional survival of fowl spermatozoa after freezing at −79 degrees C. Nature. 1951;167(4258):949–50.

    Article  CAS  PubMed  Google Scholar 

  • Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666.

    Article  CAS  PubMed  Google Scholar 

  • Rankin TL, Tsuruta KJ, Holland MK, Griswold MD, Orgebin-Crist MC. Isolation, immunolocalization, and sperm-association of three proteins of 18, 25, and 29 kilodaltons secreted by the mouse epididymis. Biol Reprod. 1992;46(5):747–66.

    Article  CAS  PubMed  Google Scholar 

  • Raviers MD. Photoperiodism, testis development and sperm production in the fowl. 9th Int Cong Anim Reprod Artif Insem. 1980;II:519–26.

    Google Scholar 

  • Raviers MD, Williams J, Brillard J. Predicting the adult daily sperm output after the first ejaculates in cocks raised under different photoschedules. Reprod Nutr Dev. 1981;21:1113–24.

    Article  Google Scholar 

  • Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE. A sperm ion channel required for sperm motility and male fertility. Nature. 2001;413(6856):603–9. doi:10.1038/35098027.

    Article  CAS  PubMed  Google Scholar 

  • Russell LD, Russell JA, MacGregor GR, Meistrich ML. Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am J Anat. 1991;192(2):97–120. doi:10.1002/aja.1001920202.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Tatsumi T, Tsutsui M, Niinomi T, Imai T, Naito M, Tajima A, Nishi Y. Method for cryopreserving semen from Yakido roosters using N-Methylacetamide as a cryoprotective agent. J Poult Sci. 2010;47:297–301.

    Article  Google Scholar 

  • Schulze C. Morphological characteristics of the spermatogonial stem cells in man. Cell Tissue Res. 1979;198(2):191–9.

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj V, Asano A, Page JL, Nelson JL, Kothapalli KS, Foster JA, Brenna JT, Weiss RS, Travis AJ. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol. 2010;348(2):177–89. doi:10.1016/j.ydbio.2010.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sexton TJ, Buckland RB, Lopez R. Comparison of two procedures for freezing semen from cocks of high and low fertility with frozen semen. Poult Sci. 1978;57(2):550–2.

    Article  CAS  PubMed  Google Scholar 

  • Shadan S, James PS, Howes EA, Jones R. Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod. 2004;71(1):253–65.

    Article  CAS  PubMed  Google Scholar 

  • Shaffner C. Longitivity of fowl spermatozoa in frozen condition. Science. 1942;96:337.

    Article  CAS  PubMed  Google Scholar 

  • Shaffner C, Henderson E, Card C. Viability of spermatozoa of the chicken under various environmental conditions. Poult Sci. 1941;20:259–65.

    Article  Google Scholar 

  • Simoes K, Orsi AM, Artoni SM. Ultrastructure of the spermatozoa of the domestic duck (Anas platyrhynchos sp.). Anat Histol Embryol. 2012;41(3):202–8. doi:10.1111/j.1439-0264.2011.01124.x.

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D. Lipid rafts and signal transduction. Nature Rev Mol Cell Biol. 2000;1(1):31–9.

    Article  CAS  Google Scholar 

  • Sloviter H. In vitro survival of rabbits’ red cells recovered after freezing. Lancet. 1951;1:1350–1.

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Polge C. Survival of spermatozoa at low temperatures. Nature. 1950;166:668–9.

    Article  CAS  PubMed  Google Scholar 

  • Soley JT. Nuclear morphogenesis and the role of the manchette during spermiogenesis in the ostrich (Struthio camelus). J Anat. 1997;190(Pt 4):563–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J Androl. 2015;17(5):726–9. doi:10.4103/1008-682X.155255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutovsky P, Manandhar G. The sperm cell. In: Jonge CJD, editor. The sperm cell. Cambridge: Cambridge University Press; 2007. p. 1–30.

    Google Scholar 

  • Tajima A. Production of germ-line chimeras and their application in domestic chicken. Avian Poult Biol Rev. 2002;13:15–30.

    Article  Google Scholar 

  • Tajima A, Graham EF, Hawkins DM. Estimation of the relative fertilizing ability of frozen chicken spermatozoa using a heterospermic competition method. J Reprod Fertil. 1989;85(1):1–5. doi:10.1530/jrf.0.0850001.

    Article  CAS  PubMed  Google Scholar 

  • Tajima A, Graham EF, Shoffner RN, Otis JS, Hawkins DM. Cryopreservation of semen from unique lines of chicken germ plasm. Poult Sci. 1990;69(6):999–1002.

    Article  CAS  PubMed  Google Scholar 

  • Tamburrino L, Marchiani S, Minetti F, Forti G, Muratori M, Baldi E. The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction. Hum Reprod. 2014;29(3):418–28. doi:10.1093/humrep/det454.

    Article  CAS  PubMed  Google Scholar 

  • Tash JS, Means AR. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod. 1982;26(4):745–63.

    Article  CAS  PubMed  Google Scholar 

  • Thaler CD, Thomas M, Ramalie JR. Reorganization of mouse sperm lipid rafts by capacitation. Mol Reprod Dev. 2006;73(12):1541–9.

    Article  CAS  PubMed  Google Scholar 

  • Thomson MF, Wishart GJ. Temperature-mediated regulation of calcium flux and motility in fowl spermatozoa. J Reprod Fertil. 1991;93(2):385–91.

    Article  CAS  PubMed  Google Scholar 

  • Tingari MD. Observations on the fine structure of spermatozoa in the testis and excurrent ducts of the male fowl, Gallus domesticus. J Reprod Fertil. 1973;34(2):255–65.

    Article  CAS  PubMed  Google Scholar 

  • Ushiyama A, Ishikawa N, Tajima A, Asano A. Comparison of membrane characteristics between freshly ejaculated and cryopreserved sperm in the chicken. J Poult Sci. 2016;53:305–12.

    Article  Google Scholar 

  • Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995a;121(4):1129–37.

    CAS  PubMed  Google Scholar 

  • Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development. 1995b;121(4):1139–50.

    CAS  PubMed  Google Scholar 

  • Visconti PE, Galantino-Homer H, Ning X, Moore GD, Valenzuela JP, Jorgez CJ, Alvarez JG, Kopf GS. Cholesterol efflux-mediated signal transduction in mammalian sperm. Beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J Biol Chem. 1999a;274(5):3235–42.

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE, Ning X, Fornes MW, Alvarez JG, Stein P, Connors SA, Kopf GS. Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol. 1999b;214(2):429–43.

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE, Krapf D, de la Vega-Beltran JL, Acevedo JJ, Darszon A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl. 2011;13(3):395–405. doi:10.1038/aja.2010.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart GJ. Quantitation of the fertilising ability of fresh compared with frozen and thawed fowl spermatozoa. Br Poult Sci. 1985;26(3):375–80. doi:10.1080/00071668508416825.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atsushi Asano or Atsushi Tajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Asano, A., Tajima, A. (2017). Development and Preservation of Avian Sperm. In: Sasanami, T. (eds) Avian Reproduction. Advances in Experimental Medicine and Biology, vol 1001. Springer, Singapore. https://doi.org/10.1007/978-981-10-3975-1_4

Download citation

Publish with us

Policies and ethics