Development and Preservation of Avian Sperm

  • Atsushi AsanoEmail author
  • Atsushi TajimaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1001)


Terminally differentiated avian sperm consist of a head which male genetic material locates and flagellum that provides the motive force to propel them towards the fertilization site. The apical end of the sperm head accommodates a secretory vesicle, called an acrosome, that undergoes acrosome reaction releasing proteolytic content to penetrate the peri-vitelline membrane of an egg. Transcriptionally and translationally inactive, sperm need to rely on these distinct compartments in which different functions are preassembled, in order to achieve the goal of “fertilization”. How are these complex structures with high functionality formed? Spermatogenesis is divided into an early stage in which diploid spermatogonia is proliferated into round spermatids thorough mitotic and meiotic divisions, and a late stage in which round spermatids are transformed into sperm though nuclear condensation and elongation of the sperm head, and formation of accessory structures. Recently, it was reported in aves that morphologically differentiated sperm undergo post-testicular maturation during passage through the male genital tract, suggesting that a similar system to mammals might be involved in the acquisition of fertilizing ability in avian sperm. Investigation for mechanisms underlying how sperm regulate their functions which are necessary to achieve fertilization is important for developing reproductive biotechnology in aves, because cryopreservation of poultry sperm is still not reliable for use in commercial production or for the preservation of genetic resources. In this review, we firstly provide an update on avian spermatogenesis, and then discuss the uniqueness of structure and functions of avian sperm, highlighting differences from mammalian sperm. Lastly, we discuss the molecular mechanism and current techniques of cryopreservation for avian sperm.


Acrosome reaction Birds Epididymis Fertilization Flagellar motility Post-testicular maturation Signaling pathways Spermatogenesis Sperm cryopreservation 


  1. Abou-haila A, Tulsiani DRP. Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys. 2009;485(1):72–81. doi: 10.1016/ Scholar
  2. Ahammad MU, Nishino C, Tatemoto H, Okura N, Kawamoto Y, Okamoto S, Nakada T. Maturational changes in motility, acrosomal proteolytic activity, and penetrability of the inner perivitelline layer of fowl sperm, during their passage through the male genital tract. Theriogenology. 2011a;76(6):1100–9. doi: 10.1016/j.theriogenology.2011.05.017.PubMedCrossRefGoogle Scholar
  3. Ahammad MU, Nishino C, Tatemoto H, Okura N, Kawamoto Y, Okamoto S, Nakada T. Maturational changes in the survivability and fertility of fowl sperm during their passage through the male reproductive tract. Anim Reprod Sci. 2011b;128(1–4):129–36. doi: 10.1016/j.anireprosci.2011.09.010.PubMedCrossRefGoogle Scholar
  4. Ahammad MU, Nishino C, Tatemoto H, Okura N, Okamoto S, Kawamoto Y, Nakada T. Acrosome reaction of fowl sperm: evidence for shedding of the acrosomal cap in intact form to release acrosomal enzyme. Poult Sci. 2013;92(3):798–803. doi: 10.3382/ps.2012-02523.PubMedCrossRefGoogle Scholar
  5. Aire TA. Ultrastructural study of spermiogenesis in the turkey, Meleagris gallopavo. Br Poult Sci. 2003;44(5):674–82. doi: 10.1080/00071660310001643651.PubMedCrossRefGoogle Scholar
  6. Aire TA. Spermiogenesis in birds. Spermatogenesis. 2014;4(3):e959392. doi: 10.4161/21565554.2014.959392.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Amann R. Sperm production rates. In: Johnson AD, Gomes WR, Vandemark NL, editors. The testis, vol. 1. New York: Academic Press; 1970. p. 433–82.Google Scholar
  8. Amaral A, Lourenco B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction. 2013;146(5):R163–74. doi: 10.1530/REP-13-0178.PubMedCrossRefGoogle Scholar
  9. Asano A, Nelson-Harrington JL, Travis AJ. Phospholipase B is activated in response to sterol removal and stimulates acrosome exocytosis in murine sperm. J Biol Chem. 2013;288(39):28104–15. doi: 10.1074/jbc.M113.450981.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Asano A, Kanbe H, Ushiyama A, Tajima A. Organization of membrane rafts in chicken sperm. J Poult Sci. 2016;53(3):233–9.CrossRefGoogle Scholar
  11. Ashizawa K, Katayama S, Tsuzuki Y. Regulation of flagellar motility by temperature-dependent phosphorylation of a 43 kDa axonemal protein in fowl spermatozoa. Biochem Biophys Res Commun. 1992;185(2):740–5. doi: 10.1016/0006-291X(92)91688-M.PubMedCrossRefGoogle Scholar
  12. Ashizawa K, Katayama S, Kobayashi T, Tsuzuki Y. Possible role of protein kinase C in regulation of flagellar motility and intracellular free Ca2+ concentration of fowl spermatozoa. J Reprod Fertil. 1994a;101(3):511–7.PubMedCrossRefGoogle Scholar
  13. Ashizawa K, Tomonaga H, Tsuzuki Y. Regulation of flagellar motility of fowl spermatozoa: evidence for the involvement of intracellular free Ca2+ and calmodulin. J Reprod Fertil. 1994b;101(2):265–72.PubMedCrossRefGoogle Scholar
  14. Ashizawa K, Wishart GJ, Tomonaga H, Nishinakama K, Tsuzuki Y. Presence of protein phosphatase type 1 and its involvement in temperature-dependent flagellar movement of fowl spermatozoa. FEBS Lett. 1994c;350(1):130–4.PubMedCrossRefGoogle Scholar
  15. Ashizawa K, Wishart GJ, Ranasinghe ARAH, Katayama S, Tsuzuki Y. Protein phosphatase-type 2B is involved in the regulation of the acrosome reaction but not in the temperature-dependent flagellar movement of fowl spermatozoa. Reproduction. 2004;128(6):783–7. doi: 10.1530/rep.1.00327.PubMedCrossRefGoogle Scholar
  16. Ashizawa K, Wishart GJ, Katayama S, Takano D, Ranasinghe AR, Narumi K, Tsuzuki Y. Regulation of acrosome reaction of fowl spermatozoa: evidence for the involvement of protein kinase C and protein phosphatase-type 1 and/or -type 2A. Reproduction. 2006;131(6):1017–24. doi: 10.1530/rep.1.01069.PubMedCrossRefGoogle Scholar
  17. Ashizawa K, Omura Y, Katayama S, Tatemoto H, Narumi K, Tsuzuki Y. Intracellular signal transduction pathways in the regulation of fowl sperm motility: evidence for the involvement of phosphatidylinositol 3-kinase (PI3-K) cascade. Mol Reprod Dev. 2009;76(7):603–10. doi: 10.1002/mrd.20995.PubMedCrossRefGoogle Scholar
  18. Austin CR. Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B. 1951;4:581–96.PubMedCrossRefGoogle Scholar
  19. Blanco JM, Long JA, Gee G, Wildt DE, Donoghue AM. Comparative cryopreservation of avian spermatozoa: benefits of non-permeating osmoprotectants and ATP on turkey and crane sperm cryosurvival. Anim Reprod Sci. 2011;123(3–4):242–8. doi: 10.1016/j.anireprosci.2010.12.005.PubMedCrossRefGoogle Scholar
  20. Blesbois E. Current status in avian semen cryopreservation. Worlds Poult Sci J. 2007;63:213–22.CrossRefGoogle Scholar
  21. Burgos MH, Fawcett DW. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol. 1955;1(4):287–300.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cai X, Clapham DE. Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: catspers and catsper? PLoS One. 2008;3(10):e3569. doi: 10.1371/journal.pone.0003569.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 1951;168(4277):697–8.PubMedCrossRefGoogle Scholar
  24. Chowdhury AK, Steinberger E. A study of germ cell morphology and duration of spermatogenic cycle in the baboon, Papio anubis. Anat Rec. 1976;185(2):155–69. doi: 10.1002/ar.1091850204.PubMedCrossRefGoogle Scholar
  25. Clermont Y. The cycle of the seminiferous epithelium in man. Am J Anat. 1963;112:35–51. doi: 10.1002/aja.1001120103.PubMedCrossRefGoogle Scholar
  26. Clermont Y, Antar M. Duration of the cycle of the seminiferous epithelium and the spermatogonial renewal in the monkey Macaca arctoides. Am J Anat. 1973;136(2):153–65. doi: 10.1002/aja.1001360204.PubMedCrossRefGoogle Scholar
  27. Clermont Y, Bustos-Obregon E. Re-examination of spermatogonial renewal in the rat by means of seminiferous tubules mounted “in toto”. Am J Anat. 1968;122(2):237–47. doi: 10.1002/aja.1001220205.PubMedCrossRefGoogle Scholar
  28. Cornwall GA, Hann SR. Specialized gene expression in the epididymis. J Androl. 1995;16(5):379–83.PubMedGoogle Scholar
  29. Cross NL. Effect of methyl-beta-cyclodextrin on the acrosomal responsiveness of human sperm. Mol Reprod Dev. 1999;53(1):92–8. doi:10.1002/(SICI)1098-2795(199905)53:1<92::AID-MRD11>3.0.CO;2-Q.PubMedCrossRefGoogle Scholar
  30. Davis BK. Influence of serum albumin on the fertilizing ability in vitro of rat spermatozoa. Proc Soc Exp Biol Med. 1976;151(2):240–3.PubMedCrossRefGoogle Scholar
  31. Donoghuea AM, Wishart GJ. Storage of poultry semen. Anim Reprod Sci. 2000;62(1–3):213–32.PubMedCrossRefGoogle Scholar
  32. Esponda P, Bedford JM. Surface of the rooster spermatozoon changes in passing through the Wolffian duct. J Exp Zool. 1985;234(3):441–9. doi: 10.1002/jez.1402340311.PubMedCrossRefGoogle Scholar
  33. Froman DP, Feltmann AJ. Sperm mobility: a quantitative trait of the domestic fowl (Gallus domesticus). Biol Reprod. 1998;58(2):379–84.PubMedCrossRefGoogle Scholar
  34. Graham EF, Nelson DS, Schmehl MK. Development of extender and techniques for frozen turkey semen. 1. Development. Poult Sci. 1982a;61(3):550–7.PubMedCrossRefGoogle Scholar
  35. Graham EF, Nelson DS, Schmehl MK. Development of extender and techniques for frozen turkey semen. 2. Fertility trials. Poult Sci. 1982b;61(3):558–63.PubMedCrossRefGoogle Scholar
  36. Gunawardana VK, Scott MG. Ultrastructural studies on the differentiation of spermatids in the domestic fowl. J Anat. 1977;124(Pt 3):741–55.PubMedPubMedCentralGoogle Scholar
  37. Hadley MA, Dym M. Spermatogenesis in the vasectomized monkey: quantitative analysis. Anat Rec. 1983;205(4):381–6. doi: 10.1002/ar.1092050403.PubMedCrossRefGoogle Scholar
  38. Howarth B Jr. An examination for sperm capacitation in the fowl. Biol Reprod. 1970;3(3):338–41.PubMedCrossRefGoogle Scholar
  39. Howarth B Jr. Fertilizing ability of cock spermatozoa from the testis epididymis and vas deferens following intramagnal insemination. Biol Reprod. 1983;28(3):586–90.PubMedCrossRefGoogle Scholar
  40. Hurtado de Llera A, Martin-Hidalgo D, Gil MC, Garcia-Marin LJ, Bragado MJ. The calcium/CaMKKalpha/beta and the cAMP/PKA pathways are essential upstream regulators of AMPK activity in boar spermatozoa. Biol Reprod. 2014;90(2):29. doi: 10.1095/biolreprod.113.112797.PubMedCrossRefGoogle Scholar
  41. Iaffaldano N, Romagnoli L, Manchisi A, Rosato MP. Cryopreservation of turkey semen by the pellet method: effects of variables such as the extender, cryoprotectant concentration, cooling time and warming temperature on sperm quality determined through principal components analysis. Theriogenology. 2011;76(5):794–801. doi: 10.1016/j.theriogenology.2011.04.012.PubMedCrossRefGoogle Scholar
  42. Iborra A, Companyo M, Martinez P, Morros A. Cholesterol efflux promotes acrosome reaction in goat spermatozoa. Biol Reprod. 2000;62(2):378–83.PubMedCrossRefGoogle Scholar
  43. Ishii H, Mori T, Shiratsuchi A, Nakai Y, Shimada Y, Ohno-Iwashita Y, Nakanishi Y. Distinct localization of lipid rafts and externalized phosphatidylserine at the surface of apoptotic cells. Biochem Biophys Res Commun. 2005;327(1):94–9. doi: 10.1016/j.bbrc.2004.11.135.PubMedCrossRefGoogle Scholar
  44. Jones R. Plasma membrane structure and remodelling during sperm maturation in the epididymis. J Reprod Fertil Suppl. 1998;53:73–84.PubMedGoogle Scholar
  45. Jones RC, Lin M. Spermatogenesis in birds. Oxf Rev Reprod Biol. 1993;15:233–64.PubMedGoogle Scholar
  46. Khalil MB, Chakrabandhu K, Xu H, Weerachatyanukul W, Buhr M, Berger T, Carmona E, Vuong N, Kumarathasan P, Wong PTT, Carrier D, Tanphaichitr N. Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev Biol. 2006;290(1):220–35. doi: 10.1016/j.ydbio.2005.11.030.CrossRefGoogle Scholar
  47. Korn N, Thurston RJ, Pooser BP, Scott TR. Ultrastructure of spermatozoa from Japanese quail. Poult Sci. 2000;79(3):407–14.PubMedCrossRefGoogle Scholar
  48. Lake PE, Ravie O, McAdam J. Preservation of fowl semen in liquid nitrogen: application to breeding programmes. Br Poult Sci. 1981;22(1):71–7. doi: 10.1080/00071688108447865.PubMedCrossRefGoogle Scholar
  49. Leblond CP, Clermont Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid–fuchsin sulfurous acid technique. Am J Anat. 1952;90(2):167–215. doi: 10.1002/aja.1000900202.PubMedCrossRefGoogle Scholar
  50. Lemoine M, Grasseau I, Brillard JP, Blesbois E. A reappraisal of the factors involved in in-vitro initiation of the acrosome reaction in chicken spermatozoa. Reproduction. 2008;136(4):391–9. doi: 10.1530/REP-08-0094.PubMedCrossRefGoogle Scholar
  51. Lemoine M, Dupont J, Guillory V, Tesseraud S, Blesbois E. Potential involvement of several signaling pathways in initiation of the chicken acrosome reaction. Biol Reprod. 2009;81(4):657–65. doi: 10.1095/biolreprod.108.072660.PubMedCrossRefGoogle Scholar
  52. Lin M, Jones RC. Renewal and proliferation of spermatogonia during spermatogenesis in the Japanese quail, Coturnix coturnix japonica. Cell Tissue Res. 1992;267(3):591–601.PubMedCrossRefGoogle Scholar
  53. Lin M, Jones RC, Blackshaw AW. The cycle of the seminiferous epithelium in the Japanese quail (Coturnix coturnix japonica) and estimation of its duration. J Reprod Fertil. 1990;88(2):481–90.PubMedCrossRefGoogle Scholar
  54. Long JA. Avian semen cryopreservation: what are the biological challenges? Poult Sci. 2006;85(2):232–6.PubMedCrossRefGoogle Scholar
  55. Long JA, Purdy PH, Zuidberg K, Hiemstra SJ, Velleman SG, Woelders H. Cryopreservation of turkey semen: effect of breeding line and freezing method on post-thaw sperm quality, fertilization, and hatching. Cryobiology. 2014;68(3):371–8. doi: 10.1016/j.cryobiol.2014.04.003.PubMedCrossRefGoogle Scholar
  56. Majhi RK, Kumar A, Yadav M, Kumar P, Maity A, Giri SC, Goswami C. Light and electron microscopic study of mature spermatozoa from White Pekin duck (Anas platyrhynchos): an ultrastructural and molecular analysis. Andrology. 2016;4(2):232–44. doi: 10.1111/andr.12130.PubMedCrossRefGoogle Scholar
  57. Means AR, Tash JS, Chafouleas JG. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev. 1982;62(1):1–39.PubMedGoogle Scholar
  58. Mocé E, Grasseau I, Blesbois E. Cryoprotectant and freezing-process alter the ability of chicken sperm to acrosome react. Anim Reprod Sci. 2010;122(3–4):359–66. doi: 10.1016/j.anireprosci.2010.10.010.PubMedCrossRefGoogle Scholar
  59. Moghbeli M, Kohram H, Zare-Shahaneh A, Zhandi M, Sharafi M, Nabi MM, Zahedi V, Sharideh H. Are the optimum levels of the catalase and vitamin E in rooster semen extender after freezing–thawing influenced by sperm concentration? Cryobiology. 2016; doi: 10.1016/j.cryobiol.2016.03.008.
  60. Morris SA, Howarth B Jr, Crim JW, Rodriguez de Cordoba A, Esponda P, Bedford JM. Specificity of sperm-binding Wolffian duct proteins in the rooster and their persistence on spermatozoa in the female host glands. J Exp Zool. 1987;242(2):189–98. doi: 10.1002/jez.1402420210.PubMedCrossRefGoogle Scholar
  61. Morton BE, Sagadraca R, Fraser C. Sperm motility within the mammalian epididymis: species variation and correlation with free calcium levels in epididymal plasma. Fertil Steril. 1978;29(6):695–8.PubMedCrossRefGoogle Scholar
  62. Nagano T. Observations on the fine structure of the developing spermatid in the domestic chicken. J Cell Biol. 1962;14:193–205.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Nguyen TM, Alves S, Grasseau I, Metayer-Coustard S, Praud C, Froment P, Blesbois E. Central role of 5′-AMP-activated protein kinase in chicken sperm functions. Biol Reprod. 2014;91(5):121. doi: 10.1095/biolreprod.114.121855.PubMedCrossRefGoogle Scholar
  64. Nguyen TM, Combarnous Y, Praud C, Duittoz A, Blesbois E. Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) effects on AMP-activated protein kinase (AMPK) regulation of chicken sperm functions. PLoS One. 2016;11(1):e0147559. doi: 10.1371/journal.pone.0147559.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nixon B, Ewen KA, Krivanek KM, Clulow J, Kidd G, Ecroyd H, Jones RC. Post-testicular sperm maturation and identification of an epididymal protein in the Japanese quail (Coturnix coturnix japonica). Reproduction. 2014;147(3):265–77. doi: 10.1530/REP-13-0566.PubMedCrossRefGoogle Scholar
  66. Noirault J, Brillard J-P, Bakst MR. Effect of various photoperiods on testicular weight, weekly sperm output and plasma levels of LH and testosterone over the reproductive season in male turkeys. Theriogenology. 2006;66(4):851–9. doi: 10.1016/j.theriogenology.2005.11.025.PubMedCrossRefGoogle Scholar
  67. Oderkirk AHF, Buckland RB. A comparison of diluents and cryopreservatives for freezing Turkey semen. Poult Sci. 1977;56(6):1861–7. doi: 10.3382/ps.0561861.CrossRefGoogle Scholar
  68. Okamura F, Nishiyama H. The early development of the tail and the transformation of the shape of the nucleus of the spermatid of the domestic fowl, Gallus gallus. Cell Tissue Res. 1976;169(3):345–59. doi: 10.1007/BF00219607.PubMedCrossRefGoogle Scholar
  69. Oko R, Clermont Y. Isolation, structure and protein composition of the perforatorium of rat spermatozoa. Biol Reprod. 1988;39(3):673–87.PubMedCrossRefGoogle Scholar
  70. Oko R, Morales CR. A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca. Dev Biol. 1994;166(1):235–45. doi: 10.1006/dbio.1994.1310.PubMedCrossRefGoogle Scholar
  71. Oko R, Moussakova L, Clermont Y. Regional differences in composition of the perforatorium and outer periacrosomal layer of the rat spermatozoon as revealed by immunocytochemistry. Am J Anat. 1990;188(1):64–73. doi: 10.1002/aja.1001880108.PubMedCrossRefGoogle Scholar
  72. Partyka A, Nizanski W, Bajzert J, Lukaszewicz E, Ochota M. The effect of cysteine and superoxide dismutase on the quality of post-thawed chicken sperm. Cryobiology. 2013;67(2):132–6. doi: 10.1016/j.cryobiol.2013.06.002.PubMedCrossRefGoogle Scholar
  73. du Plessis L, Soley JT. A re-evaluation of sperm ultrastructure in the emu, Dromaius novaehollandiae. Theriogenology. 2014;81(8):1073–84. doi: 10.1016/j.theriogenology.2014.01.034.PubMedCrossRefGoogle Scholar
  74. du Plessis SS, Agarwal A, Mohanty G, van der Linde M. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl. 2015;17(2):230–5. doi: 10.4103/1008-682X.135123.PubMedCrossRefGoogle Scholar
  75. Polge C. Functional survival of fowl spermatozoa after freezing at −79 degrees C. Nature. 1951;167(4258):949–50.PubMedCrossRefGoogle Scholar
  76. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666.PubMedCrossRefGoogle Scholar
  77. Rankin TL, Tsuruta KJ, Holland MK, Griswold MD, Orgebin-Crist MC. Isolation, immunolocalization, and sperm-association of three proteins of 18, 25, and 29 kilodaltons secreted by the mouse epididymis. Biol Reprod. 1992;46(5):747–66.PubMedCrossRefGoogle Scholar
  78. Raviers MD. Photoperiodism, testis development and sperm production in the fowl. 9th Int Cong Anim Reprod Artif Insem. 1980;II:519–26.Google Scholar
  79. Raviers MD, Williams J, Brillard J. Predicting the adult daily sperm output after the first ejaculates in cocks raised under different photoschedules. Reprod Nutr Dev. 1981;21:1113–24.CrossRefGoogle Scholar
  80. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE. A sperm ion channel required for sperm motility and male fertility. Nature. 2001;413(6856):603–9. doi: 10.1038/35098027.PubMedCrossRefGoogle Scholar
  81. Russell LD, Russell JA, MacGregor GR, Meistrich ML. Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am J Anat. 1991;192(2):97–120. doi: 10.1002/aja.1001920202.PubMedCrossRefGoogle Scholar
  82. Sasaki K, Tatsumi T, Tsutsui M, Niinomi T, Imai T, Naito M, Tajima A, Nishi Y. Method for cryopreserving semen from Yakido roosters using N-Methylacetamide as a cryoprotective agent. J Poult Sci. 2010;47:297–301.CrossRefGoogle Scholar
  83. Schulze C. Morphological characteristics of the spermatogonial stem cells in man. Cell Tissue Res. 1979;198(2):191–9.PubMedCrossRefGoogle Scholar
  84. Selvaraj V, Asano A, Page JL, Nelson JL, Kothapalli KS, Foster JA, Brenna JT, Weiss RS, Travis AJ. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol. 2010;348(2):177–89. doi: 10.1016/j.ydbio.2010.09.019.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sexton TJ, Buckland RB, Lopez R. Comparison of two procedures for freezing semen from cocks of high and low fertility with frozen semen. Poult Sci. 1978;57(2):550–2.PubMedCrossRefGoogle Scholar
  86. Shadan S, James PS, Howes EA, Jones R. Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod. 2004;71(1):253–65.PubMedCrossRefGoogle Scholar
  87. Shaffner C. Longitivity of fowl spermatozoa in frozen condition. Science. 1942;96:337.PubMedCrossRefGoogle Scholar
  88. Shaffner C, Henderson E, Card C. Viability of spermatozoa of the chicken under various environmental conditions. Poult Sci. 1941;20:259–65.CrossRefGoogle Scholar
  89. Simoes K, Orsi AM, Artoni SM. Ultrastructure of the spermatozoa of the domestic duck (Anas platyrhynchos sp.). Anat Histol Embryol. 2012;41(3):202–8. doi: 10.1111/j.1439-0264.2011.01124.x.PubMedCrossRefGoogle Scholar
  90. Simons K, Toomre D. Lipid rafts and signal transduction. Nature Rev Mol Cell Biol. 2000;1(1):31–9.CrossRefGoogle Scholar
  91. Sloviter H. In vitro survival of rabbits’ red cells recovered after freezing. Lancet. 1951;1:1350–1.PubMedCrossRefGoogle Scholar
  92. Smith A, Polge C. Survival of spermatozoa at low temperatures. Nature. 1950;166:668–9.PubMedCrossRefGoogle Scholar
  93. Soley JT. Nuclear morphogenesis and the role of the manchette during spermiogenesis in the ostrich (Struthio camelus). J Anat. 1997;190(Pt 4):563–76.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sullivan R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J Androl. 2015;17(5):726–9. doi: 10.4103/1008-682X.155255.PubMedPubMedCentralGoogle Scholar
  95. Sutovsky P, Manandhar G. The sperm cell. In: Jonge CJD, editor. The sperm cell. Cambridge: Cambridge University Press; 2007. p. 1–30.Google Scholar
  96. Tajima A. Production of germ-line chimeras and their application in domestic chicken. Avian Poult Biol Rev. 2002;13:15–30.CrossRefGoogle Scholar
  97. Tajima A, Graham EF, Hawkins DM. Estimation of the relative fertilizing ability of frozen chicken spermatozoa using a heterospermic competition method. J Reprod Fertil. 1989;85(1):1–5. doi: 10.1530/jrf.0.0850001.PubMedCrossRefGoogle Scholar
  98. Tajima A, Graham EF, Shoffner RN, Otis JS, Hawkins DM. Cryopreservation of semen from unique lines of chicken germ plasm. Poult Sci. 1990;69(6):999–1002.PubMedCrossRefGoogle Scholar
  99. Tamburrino L, Marchiani S, Minetti F, Forti G, Muratori M, Baldi E. The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction. Hum Reprod. 2014;29(3):418–28. doi: 10.1093/humrep/det454.PubMedCrossRefGoogle Scholar
  100. Tash JS, Means AR. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod. 1982;26(4):745–63.PubMedCrossRefGoogle Scholar
  101. Thaler CD, Thomas M, Ramalie JR. Reorganization of mouse sperm lipid rafts by capacitation. Mol Reprod Dev. 2006;73(12):1541–9.PubMedCrossRefGoogle Scholar
  102. Thomson MF, Wishart GJ. Temperature-mediated regulation of calcium flux and motility in fowl spermatozoa. J Reprod Fertil. 1991;93(2):385–91.PubMedCrossRefGoogle Scholar
  103. Tingari MD. Observations on the fine structure of spermatozoa in the testis and excurrent ducts of the male fowl, Gallus domesticus. J Reprod Fertil. 1973;34(2):255–65.PubMedCrossRefGoogle Scholar
  104. Ushiyama A, Ishikawa N, Tajima A, Asano A. Comparison of membrane characteristics between freshly ejaculated and cryopreserved sperm in the chicken. J Poult Sci. 2016;53:305–12.CrossRefGoogle Scholar
  105. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995a;121(4):1129–37.PubMedGoogle Scholar
  106. Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development. 1995b;121(4):1139–50.PubMedGoogle Scholar
  107. Visconti PE, Galantino-Homer H, Ning X, Moore GD, Valenzuela JP, Jorgez CJ, Alvarez JG, Kopf GS. Cholesterol efflux-mediated signal transduction in mammalian sperm. Beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J Biol Chem. 1999a;274(5):3235–42.PubMedCrossRefGoogle Scholar
  108. Visconti PE, Ning X, Fornes MW, Alvarez JG, Stein P, Connors SA, Kopf GS. Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol. 1999b;214(2):429–43.PubMedCrossRefGoogle Scholar
  109. Visconti PE, Krapf D, de la Vega-Beltran JL, Acevedo JJ, Darszon A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl. 2011;13(3):395–405. doi: 10.1038/aja.2010.69.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wishart GJ. Quantitation of the fertilising ability of fresh compared with frozen and thawed fowl spermatozoa. Br Poult Sci. 1985;26(3):375–80. doi: 10.1080/00071668508416825.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations