Advertisement

Avian Biotechnology

  • Yoshiaki NakamuraEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1001)

Abstract

Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene “pharming” as well as gene banking.

Keywords

Artificial insemination Chickens Embryo culture Cryopreservation Genetic modification Gemline chimeras Poultry Primordial germ cells Transplantation 

References

  1. Aige-Gil V, Simkiss K. Sterilisation of avian embryos with busulphan. Res Vet Sci. 1991;50:139–44.PubMedCrossRefGoogle Scholar
  2. Alexander A, Graham J, Hammerstedt RH, et al. Effect of genotype and cryopreservation of avian semen on fertility and number of perivitelline spermatozoa. Br Poultry Sci. 1993;34:757–64.CrossRefGoogle Scholar
  3. Aoyama H, Asamoto K, Nojyo Y, et al. Monoclonal antibodies specific to quail embryo tissues: their epitopes in the developing quail embryo and their application to identification of quail cells in quail-chicken chimeras. J Histochem Cytochem. 1992;40:1769–77.PubMedCrossRefGoogle Scholar
  4. Blanco JM, Gee G, Wildt DE, et al. Species variation in osmotic, cryoprotectant, and cooling rate tolerance in poultry, eagle, and peregrine falcon spermatozoa. Biol Reprod. 2000;63:1164–71.PubMedCrossRefGoogle Scholar
  5. Blesbois E, Grasseau I, Seigneurin F. Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction. 2005;129:371–8.PubMedCrossRefGoogle Scholar
  6. Bosselman RA, Hsu RY, Boggs T, et al. Germline transmission of exogenous genes in the chicken. Science. 1989;243:533–5.PubMedCrossRefGoogle Scholar
  7. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA. 1994;91:11303–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA. 1994;91:11298–302.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Carsience RS, Clark ME, Verrinder Gibbins AM, et al. Germline chimeric chickens from dispersed donor blastodermal cells and compromised recipient embryos. Development. 1993;117:669–75.PubMedGoogle Scholar
  10. Catzeflis FM, Dickerman AW, Michaux J, et al. DNA hybridization and rodent phylogeny. In: Szalay FS, Novacek MJ, McKenna MC, editors. Mammal phylogeny (placentals), vol. 2. New York: Springer Verlag; 1993. p. 159–72.CrossRefGoogle Scholar
  11. Chalah T, Seigneurin F, Blesbois E, et al. In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology. 1999;39:185–91.PubMedCrossRefGoogle Scholar
  12. Chen HY, Garber EA, Mills E, et al. Vectors, promoters, and expression of genes in chick embryos. J Reprod Fertil. 1990;41:173–82.Google Scholar
  13. Clouthier DE, Avarbock MR, Maika SD, et al. Rat spermatogenesis in mouse testis. Nature. 1996;381:418–21.Google Scholar
  14. Dobrinski I, Avarbock MR, Brinster RL. Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod. 1999;61:1331–9.PubMedCrossRefGoogle Scholar
  15. Dobrinski I, Avarbock MR, Brinster RL. Germ cell transplantation from large domestic animals into mouse testes. Mol Reprod Dev. 2000;57:270–9.PubMedCrossRefGoogle Scholar
  16. Du SJ, Gong ZY, Fletcher GL, et al. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Biotechnology. 1992;10:176–81.PubMedGoogle Scholar
  17. Eyal-Giladi H, Kochav S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev Biol. 1976;49:321–37.PubMedCrossRefGoogle Scholar
  18. FAO. Secondary guidelines for development of national farm animal genetic resources management plans: management of small populations at risk. UNEP: Nairobi, Kenya; 1998, pp. 1–210.Google Scholar
  19. Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA. 1980;77:7380–4.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88:49–92.PubMedCrossRefGoogle Scholar
  21. Hanzawa S, Niinomi T, Miyata T, et al. Cryopreservation of chicken semen using n-methylacetamide as cryoprotective agent. Nippon Kakin Gakkaishi (Jpn J Poult Sci). 2010;47:J27–32. (in Japanese)Google Scholar
  22. Harvey AJ, Speksnijder G, Baugh LR, et al. Expression of exogenous protein in the egg white of transgenic chickens. Nat Biotechnol. 2002;20:396–9.PubMedCrossRefGoogle Scholar
  23. Hermann BP, Sukhwani M, Winkler F, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11:715–26.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Honaramooz A, Megee SO, Dobrinski I. Germ cell transplantation in pig. Biol Reprod. 2002;66:21–8.PubMedCrossRefGoogle Scholar
  25. Honaramooz A, Behboodi E, Blash S, et al. Germ cell transplantation in goats. Mol Reprod Dev. 2003;64:422–8.PubMedCrossRefGoogle Scholar
  26. Izadyar F, Den Ouden K, Stout TA, et al. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction. 2003;126:765–74.PubMedCrossRefGoogle Scholar
  27. Jaenisch R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci USA. 1976;73:1260–4.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jung JG, Lee YM, Kim JN, et al. The reversible developmental unipotency of germ cells in chicken. Reproduction. 2010;139:113–9.PubMedCrossRefGoogle Scholar
  29. Kagami H, Tagami T, Matsubara Y, et al. The developmental origin of primordial germ cells and the transmission of the donor-derived gametes in mixed-sex germline chimeras to the offspring in the chicken. Mol Reprod Dev. 1997;48:501–10.PubMedCrossRefGoogle Scholar
  30. Kamihira M, Oguchi S, Tachibana A, et al. Improved hatching for in vitro quail embryo culture using surrogate eggshell and artificial vessel. Dev Growth Differ. 1998;40:449–55.PubMedCrossRefGoogle Scholar
  31. Kamihira M, Ono K, Esaka K, et al. High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J Virol. 2005;79:10864–74.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kanatsu-Shinohara M, Inoue K, Miki H, et al. Clonal origin of germ cell colonies after spermatogonial transplantation in mice. Biol Reprod. 2006;75:68–74.PubMedCrossRefGoogle Scholar
  33. Kang SJ, Choi JW, Kim SY, et al. Reproduction of wild birds via interspecies germ cell transplantation. Biol Reprod. 2008;79:931–7.PubMedCrossRefGoogle Scholar
  34. Kang KS, Park TS, Rengaraj D, et al. Fertilisation of cryopreserved sperm and unfertilised quail ovum by intracytoplasmic sperm injection. Reprod Fertil Dev. 2016;28:1974–1981.Google Scholar
  35. Karagenç L, Cinnamon Y, Ginsburg M, et al. Origin of primordial germ cells in the prestreak chick embryo. Dev Genet. 1996;19:290–301.PubMedCrossRefGoogle Scholar
  36. Kato A, Miyahara D, Kagami H, et al. Culture system for bobwhite quail embryos from the blastoderm stage to hatc hing. J Poult Sci. 2013;50:155–8.Google Scholar
  37. Kohara Y, Kanai Y, Tajima A. Cryopreservation of gonadal germ cells (GGCs) from the domestic chicken using vitrification. J Poult Sci. 2008;45:57–61.CrossRefGoogle Scholar
  38. Lake PE, Ravie O, McAdam J. Preservation of fowl semen in liquid nitrogen: application to breeding programmes. Br Poult Sci. 1981;22:71–7.PubMedCrossRefGoogle Scholar
  39. Lillico SG, Sherman A, McGrew MJ, et al. Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA. 2007;104:1771–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lin M, Thorne MH, Martin IC, Scheldon BL, Jones RC. Development of the gonads in the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZW). Reprod fertil Dev. 1995;7:1185–97.Google Scholar
  41. Liu CH, Chang IK, Sasse J, et al. Xenogenic oogenesis of chicken (Gallus domesticus) female primordial germ cells in germline chimeric quail (Coturnix japonica) ovary. Anim Reprod Sci. 2007;101:344–50.PubMedCrossRefGoogle Scholar
  42. Liu J, Song Y, Cheng KM, et al. Production of donor-derived offspring from cryopreserved ovarian tissue in Japanese quail (Coturnix japonica). Biol Reprod. 2010;83:15–9.PubMedCrossRefGoogle Scholar
  43. Liu C, Khazanehdari KA, Baskar V, et al. Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer. Biol Reprod. 2012;86:1–8.Google Scholar
  44. Love J, Gribbin C, Mather C, et al. Transgenic birds by DNA microinjection. Biotechnology. 1994;12:60–3.PubMedGoogle Scholar
  45. Lyall J, Irvine RM, Sherman A, et al. Suppression of avian influenza transmission in genetically modified chickens. Science. 2011;331:223–6.PubMedCrossRefGoogle Scholar
  46. Macdonald J, Taylor L, Sherman A, et al. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci USA. 2012;109:E1466–72.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Mak SS, Wrabel A, Nagai H, et al. Zebra finch as a developmental model. Genesis. 2015;53:669–77.PubMedCrossRefGoogle Scholar
  48. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA. 1997;94:12457–61.PubMedPubMedCentralCrossRefGoogle Scholar
  49. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387:83–90.PubMedCrossRefGoogle Scholar
  50. Minvielle F, Gourichon D, Monvoisin JL. Testing homology of loci for two plumage colors, “lavender” and “recessive white,” with chicken and Japanese quail hybrids. J Hered. 2002;93:73–6.PubMedCrossRefGoogle Scholar
  51. Miyahara D, Oishi I, Makino R, et al. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2. J Reprod Dev. 2016;62:143–9.Google Scholar
  52. Mizushima S, Hiyama G, Shiba K, et al. The birth of quail chicks after intracytoplasmic sperm injection. Development. 2014;141:3799–806.PubMedCrossRefGoogle Scholar
  53. Mocé E, Grasseau I, Blesbois E. Cryoprotectant and freezing-process alter the ability of chicken sperm to acrosome react. Anim Reprod Sci. 2010;122:359–66.PubMedCrossRefGoogle Scholar
  54. Moore DT, Purdy PH, Blackburn HD. A method for cryopreserving chicken primordial germ cells. Poult Sci. 2006;85:1784–90.PubMedCrossRefGoogle Scholar
  55. Mosher DS, Quignon P, Bustamante CD, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007;3:e79.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Motono M, Yamada Y, Hattori Y, et al. Production of transgenic chickens from purified primordial germ cells infected with a lentiviral vector. J Biosci Bioeng. 2010;109:315–21.PubMedCrossRefGoogle Scholar
  57. Mozdziak PE, Wysocki R, Angerman-Stewart J, et al. Production of chick germline chimeras from fluorescence-activated cell-sorted gonocytes. Poult Sci. 2006;85:1764–8.PubMedCrossRefGoogle Scholar
  58. Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril. 2002;78:1225–33.PubMedCrossRefGoogle Scholar
  59. Naito M, Nirasawa K, Oishi T. Development in culture of the chick embryo from fertilized ovum to hatching. J Exp Zool. 1990;254:322–6.PubMedCrossRefGoogle Scholar
  60. Naito M, Tajima A, Tagami T, et al. Preservation of chick primordial germ cells in liquid nitrogen and subsequent production of viable offspring. J Reprod Fertil. 1994a;102:321–5.PubMedCrossRefGoogle Scholar
  61. Naito M, Tajima A, Yasuda Y, et al. Production of germline chimeric chickens, with high transmission rate of donor–derived gametes, produced by transfer of primordial germ cells. Mol Reprod Dev. 1994b;39:153–61.PubMedCrossRefGoogle Scholar
  62. Naito M, Matsubara Y, Harumi T, et al. Differentiation of donor primordial germ cells into functional gametes in the gonads of mixed-sex germline chimaeric chickens produced by transfer of primordial germ cells isolated from embryonic blood. J Reprod Fertil. 1999;117:291–8.PubMedCrossRefGoogle Scholar
  63. Naito M, Minematsu T, Harumi T, et al. Testicular and ovarian gonocytes from 20-day incubated chicken embryos contribute to germline lineage after transfer into bloodstream of recipient embryos. Reproduction. 2007;134:577–84.PubMedCrossRefGoogle Scholar
  64. Nakajima Y, Minematsu T, Naito M, et al. A new method for isolating viable gonadal germ cells from 7-day-old chick embryos. J Poult Sci. 2011;48:106–11.CrossRefGoogle Scholar
  65. Nakajima Y, Hattori T, Asano A, et al. Migration and differentiation of gonadal germ cells under cross-sex germline chimeras condition in domestic chickens. J Reprod Dev. 2014;60:406–10.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nakamura Y. Poultry genetic resource conservation using primordial germ cells. J Reprod Dev. 2016;62(5):431–7. (Published online)PubMedPubMedCentralCrossRefGoogle Scholar
  67. Nakamura Y, Yamamoto Y, Usui F, et al. Migration and proliferation of primordial germ cells in the early chicken embryo. Poult Sci. 2007;86:2182–93.PubMedCrossRefGoogle Scholar
  68. Nakamura Y, Yamamoto Y, Usui F, et al. Increased proportion of donor primordial germ cells in chimeric gonads by sterilisation of recipient embryos using busulfan sustained-release emulsion in chicken. Reprod Fertil Dev. 2008;20:900–7.PubMedCrossRefGoogle Scholar
  69. Nakamura Y, Usui F, Ono T, et al. Germline replacement by transfer of primordial germ cells into partially sterilized embryos in the chicken. Biol Reprod. 2010a;83:130–7.PubMedCrossRefGoogle Scholar
  70. Nakamura Y, Usui F, Miyahara D, et al. Efficient system for preservation and regeneration of genetic resources in chicken: concurrent storage of primordial germ cells and live animals from early embryos of a rare indigenous fowl (Gifujidori). Reprod Fertil Dev. 2010b;22:1237–46.PubMedCrossRefGoogle Scholar
  71. Nakamura Y, Usui F, Miyahara D, et al. Viability and functionality of primordial germ cells after freeze-thaw in chickens. J Poult Sci. 2011;48:57–63.CrossRefGoogle Scholar
  72. Nakamura Y, Usui F, Miyahara D, et al. X-irradiation removes endogenous primordial germ cells (PGCs) and increases germline transmission of donor PGCs in chimeric chickens. J Reprod Dev. 2012;58:432–7.PubMedCrossRefGoogle Scholar
  73. Nakamura Y, Kagami H, Tagami T. Development, differentiation and manipulation of chicken germ cells. Dev Growth Differ. 2013a;55:20–40.PubMedCrossRefGoogle Scholar
  74. Nakamura Y, Tasai M, Takeda K, et al. Production of functional gametes from cryopreserved primordial germ cells of the Japanese quail. J Reprod Dev. 2013b;59:580–7.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nakamura Y, Rikimaru K, Takahashi D, et al. Production of functional gametes following transfer of frozen-thawed primordial germ cells of Hinai-dori fowl after long distance transportation for diversification of the risk to outbreaks of highly pathogenic avian influenza. Nippon Kakin Gakkaishi (Jpn J Poult Sci). 2016;53:J7–J14. (In Japanese)Google Scholar
  76. Nandi S, Whyte J, Taylor L, et al. Cryopreservation of specialized chicken lines using cultured primordial germ cells. Poult Sci. 2016;95:1905–11.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ogawa T, Dobrinski I, Avarbock MR, et al. Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes. Biol Reprod. 1999;60:515–21.PubMedCrossRefGoogle Scholar
  78. Oishi I. Improvement of transfection efficiency in cultured chicken primordial germ cells by Percoll density gradient centrifugation. Biosci Biotechnol Biochem. 2010;74:2426–30.PubMedCrossRefGoogle Scholar
  79. Oishi I, Yoshii K, Miyahara D, et al. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci Rep. 2016;6:23980.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Okutsu T, Suzuki K, Takeuchi Y, et al. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci USA. 2006;103:2725–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Okutsu T, Shikina S, Kanno M, et al. Production of trout offspring from triploid salmon parents. Science. 2007;317:1517.PubMedCrossRefGoogle Scholar
  82. Ono T, Machida Y. Immunomagnetic purification of viable primordial germ cells of Japanese quail (Coturnix japonica). Comp Biochem Physiol A Mol Integr Physiol. 1999;122:255–9.PubMedCrossRefGoogle Scholar
  83. Ono T, Murakami T, Mochii M, et al. A complete culture system for avian transgenesis, supporting quail embryos from the single-cell stage to hatching. Dev Biol. 1994;161:126–30.PubMedCrossRefGoogle Scholar
  84. Ono T, Nakane Y, Wadayama T, Tsudzuki M, Arisawa K, Ninomiya S, Suzuki T, Mizutani M, Kagami H. Culture system for embryos of blue-breasted quail from the blastoderm stage to hatching. Exp Anim. 2005;54:7–11.PubMedCrossRefGoogle Scholar
  85. Pain B, Clark ME, Shen M, et al. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development. 1996;122:2339–48.PubMedGoogle Scholar
  86. Palmiter RD, Brinster RL, Hammer RE, et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982;300:611–5.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Park TS, Han JY. piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci USA. 2012;109:9337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Park TS, Lee HJ, Kim KH, et al. Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci USA. 2014;111:12716–21.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Peláez J, Bongalhardo DC, Long JA. Characterizing the glycocalyx of poultry spermatozoa: III. Semen cryopreservation methods alter the carbohydrate component of rooster sperm membrane glycoconjugates. Poult Sci. 2011;90:435–43.PubMedCrossRefGoogle Scholar
  90. Perry MM. A complete culture system for the chick embryo. Nature. 1988;331:70–2.PubMedCrossRefGoogle Scholar
  91. Petitte JN, Clark ME, Liu G, et al. Production of somatic and germline chimeras in the chicken by transfer of blastodermal cells. Development. 1990;108:185–9.PubMedGoogle Scholar
  92. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164:666.PubMedCrossRefGoogle Scholar
  93. Raju TS, Briggs JB, Borge SM, et al. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology. 2000;10:477–86.PubMedCrossRefGoogle Scholar
  94. Rao S, Fujimura T, Matsunari H, et al. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev. 2016;83:61–70.PubMedCrossRefGoogle Scholar
  95. Rapp JC, Harvey AJ, Speksnijder GL, et al. Biologically active human interferon alpha-2b produced in the egg white of transgenic hens. Transgenic Res. 2003;12:569–75.PubMedCrossRefGoogle Scholar
  96. Reynaud G. Transfert de cellules germinales primordiales de Dindon à l’embryon de Poulet par injection intravasculaire. [The transfer of Turkey primordial germ cells to chick embryos by intravascular injection]. J Embryol Exp Morphol. 1969;21:485–507.PubMedGoogle Scholar
  97. Robertson GAG. Ovarian transplantation in the house mouse. Proc Soc Exp Biol Med. 1940;44:302–4.CrossRefGoogle Scholar
  98. Saito T, Goto-Kazeto R, Arai K, et al. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod. 2008;78:159–66.PubMedCrossRefGoogle Scholar
  99. Salter DW, Smith EJ, Hughes SH, et al. Gene insertion into the chicken germ line by retroviruses. Poult Sci. 1986;65:1445–58.PubMedCrossRefGoogle Scholar
  100. Sawicka D, Chojnacka-Puchta L, Zielinski M, et al. Flow cytometric analysis of apoptosis in cryoconserved chicken primordial germ cells. Cell Mol Biol Lett. 2015;20:143–59.PubMedCrossRefGoogle Scholar
  101. Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004;350:2682–8.PubMedCrossRefGoogle Scholar
  102. Schusser B, Collarini EJ, Yi H, et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc Natl Acad Sci USA. 2013;110:20170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Setioko AR, Tagami T, Tase H, et al. Cryopreservation of primordial germ cells (PGCs) from White Leghorn embryos using commercial cryoprotectants. J Poult Sci. 2007;44:73–7.CrossRefGoogle Scholar
  104. Silversides FG, Mérat P. Homology of the s+ locus in the chicken with Al+ in the Japanese quail. J Hered. 1991;82:245–7.Google Scholar
  105. Smith CA, Roeszler KN, Bowles J, et al. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev Biol. 2008;8:85.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Snow M, Cox SL, Jenkin G, et al. Generation of live young from xenografted mouse ovaries. Science. 2002;297:2227.PubMedCrossRefGoogle Scholar
  107. Song Y, Silversides FG. The technique of orthotropic ovarian transplantation in the chicken. Poult Sci. 2006;85:1104–6.PubMedCrossRefGoogle Scholar
  108. Song Y, Silversides FG. Heterotopic transplantation of testes in newly hatched chickens and subsequent production of offspring via intramagnal insemination. Biol Reprod. 2007;76:598–603.PubMedCrossRefGoogle Scholar
  109. Song Y, Silversides FG. Transplantation of ovaries in Japanese quail (Coturnix japonica). Anim Reprod Sci. 2008;105:430–7.PubMedCrossRefGoogle Scholar
  110. Song Y, Cheng KM, Robertson MC, et al. Production of donor-derived offspring after ovarian transplantation between Muscovy (Cairina moschata) and Pekin (Anas platyrhynchos) ducks. Poult Sci. 2012;91:197–200.PubMedCrossRefGoogle Scholar
  111. Speksnijder G, Ivarie R. A modified method of shell windowing for producing somatic or germline chimeras in fertilized chicken eggs. Poult Sci. 2000;79:1430–3.PubMedCrossRefGoogle Scholar
  112. Tagami T, Kagami H, Matsubara Y, Harumi T, Naito M, Takeda K, Hanada H, Nirasawa K. Differentiation of female primordial germ cells in the male testes of chicken (Gallus gallus domesticus). Molecular Reproduction and Development. 2007;74(1):68–75.Google Scholar
  113. Tahara Y, Obara K. A novel shell-less culture system for chick embryos using a plastic film as culture vessels. J Poult Sci. 2014;51:307–12.CrossRefGoogle Scholar
  114. Tajima A, Naito M, Yasuda Y, et al. Production of germline chimeras by transfer of cryopreserved gonadal primordial germ cells (gPGCs) in chicken. J Exp Zool. 1998;280:265–7.PubMedCrossRefGoogle Scholar
  115. Tajima A, Graham EF, Shoffner RN, et al. Cryopreservation of semen from unique lines of chicken germ plasm. Poult Sci. 1990;69:999–1002.PubMedCrossRefGoogle Scholar
  116. Tajima A, Naito M, Yasuda Y, et al. Production of germ line chimera by transfer of primordial germ cells in the domestic chicken (Gallus domesticus). Theriogenology. 1993;40:509–19.PubMedCrossRefGoogle Scholar
  117. Takagi S, Ono T, Tsukada A, et al. Fertilization and blastoderm development of quail oocytes after intracytoplasmic injection of chicken sperm bearing the W chromosome. Poult Sci. 2007;86:937–43.Google Scholar
  118. Thoraval P, Afanassieff M, Cosset FL, et al. Germline transmission of exogenous genes in chickens using helper-free ecotropic avian leukosis virus-based vectors. Transgenic Res. 1995;4:369–77.PubMedCrossRefGoogle Scholar
  119. Tonus C, Cloquette K, Ectors F, et al. Long term-cultured and cryopreserved primordial germ cells from various chicken breeds retain high proliferative potential and gonadal colonisation competency. Reprod Fertil Dev. 2014;28:628–39.CrossRefGoogle Scholar
  120. Trefil P, Micáková A, Mucksová J, et al. Restoration of spermatogenesis and male fertility by transplantation of dispersed testicular cells in the chicken. Biol Reprod. 2006;75:575–81.PubMedCrossRefGoogle Scholar
  121. Tselutin K, Seigneurin F, Blesbois E. Comparison of cryoprotectants and methods of cryopreservation of fowl spermatozoa. Poult Sci. 1999;78:586–90.PubMedCrossRefGoogle Scholar
  122. van de Lavoir MC, Diamond JH, Leighton PA, et al. Germline transmission of genetically modified primordial germ cells. Nature. 2006;441:766–9.PubMedCrossRefGoogle Scholar
  123. van de Lavoir MC, Collarini EJ, Leighton PA, et al. Interspecific germline transmission of cultured primordial germ cells. PLoS One. 2012;7:e35664.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Váradi É, Végi B, Liptói K, et al. Methods for cryopreservation of guinea fowl sperm. PLoS One. 2013;8:e62759.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Vick L, Li Y, Simkiss K. Transgenic birds from transformed primordial germ cells. Proc R Soc B Biol Sci. 1993;251:179–82.CrossRefGoogle Scholar
  126. Wakayama T, Yanagimachi R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol. 1998;16:639–41.PubMedCrossRefGoogle Scholar
  127. Wernery U, Liu C, Baskar V, et al. Primordial germ cell-mediated chimera technology produces viable pure-line Houbara bustard offspring: potential for repopulating an endangered species. PLoS One. 2010;5:e15824.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Whishart GJ. Quantitation of the fertilising ability of fresh compared with frozen and thawed fowl spermatozoa. Br Poult Sci. 1985;26:375–80.CrossRefGoogle Scholar
  129. Whyte J, Glover JD, Woodcock M, et al. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Reports. 2015;5:1171–82.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Yamamoto Y, Usui F, Nakamura Y, et al. A novel method to isolate primordial germ cells and its use for the generation of germline chimeras in chicken. Biol Reprod. 2007;77:115–9.PubMedCrossRefGoogle Scholar
  131. Yoshizaki G, Ichikawa M, Hayashi M, et al. Sexual plasticity of ovarian germ cells in rainbow trout. Development. 2010;137:1227–30.PubMedCrossRefGoogle Scholar
  132. Zhang X, Ebata KT, Nagano MC. Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation. Biol Reprod. 2003;69:1872–8.PubMedCrossRefGoogle Scholar
  133. Zhao DF, Kuwana T. Purification of avian circulating primordial germ cells by Nycodenz density gradient centrifugation. Br Poult Sci. 2003;44:30–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Division of Germ Cell BiologyNational Institute for Basic BiologyOkazakiJapan

Personalised recommendations