An ID-Based Anonymous Authentication Scheme for Distributed Mobile Cloud Computing

  • Tianyi Zhang
  • Fengtong WenEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 699)


Nowadays, the number of mobile users has rapidly increased. At the same time, the security problems in mobile cloud environment have a large attention from the user of mobile cloud. In this paper, a user anonymity and security authentication scheme for distributed mobile cloud computing is proposed. The proposed scheme is based on bilinear pairing cryptosystem and the theory of random number. It achieves mutual authentication, key exchange, user anonymity, and user intractability. It can resist reply attack, impersonation attack, and collusion attack with k-traitors. The proposed scheme has the function about cancel passive user for saving the storage space of server. By the security analysis, the proposed scheme is secure and efficient.


Authentication scheme Bilinear pairing Mobile cloud computing services User anonymity User intractability 



This work is supported by Shandong Provincial Natural Science Foundation, China (NO. ZR2013FM009).


  1. 1.
    ABI Research Report, Mobile Cloud Applications.
  2. 2.
    Le, G., Xu, K., Song, M., Song, J.: A survey on research on mobile cloud computing. In: International Conference on Computer and Information Science, pp. 387–392 (2011)Google Scholar
  3. 3.
    Qiu, X.F., Liu, J.W., Zhao, P.C.: Secure cloud computing architecture on mobile internet. In: International Conference on AIMSEC, pp. 619–622 (2011)Google Scholar
  4. 4.
    Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future Gen. Comput. Sys. 29(1), 84–106 (2013)CrossRefGoogle Scholar
  5. 5.
    Song, W.G., Su, X.L.: Review of mobile cloud computing. In: IEEE 3rd ICCSN, pp. 1–4 (2011)Google Scholar
  6. 6.
    Urien, P., Marie, E., Kiennert, C.: An innovative solution for cloud computing authentication: grids of EAP-TLS smart cards. In: International Conference on Digital Telecommunications, pp. 22–27 (2010)Google Scholar
  7. 7.
    Ahn, H., Chang, H., Jang, C., Choi, E.: User authentication platform using provisioning in cloud computing environment. In: Kim, T., Adeli, H., Robles, R.J., Balitanas, M. (eds.) Advanced Communication and Networking. Communications in Computer and Information Service, vol. 199, pp. 132–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Chang, H., Choi, E.: User authentication in cloud computing. UCMACCIS 151, 338–342 (2011)Google Scholar
  9. 9.
    Tsai, J.L., Lo, N.W., Wu, T.C.: Secure delegation-based authentication protocol for wireless roaming service. IEEE Commun. Lett. 16(7), 1100–1102 (2012)CrossRefGoogle Scholar
  10. 10.
    Hyeonseung, K., Chunsik, P.: Cloud computing and personal authentication service. J. Korea Inst. Inf. Secur. Cryptol. 20(2), 11–19 (2010)Google Scholar
  11. 11.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi: 10.1007/3-540-39799-X_31 CrossRefGoogle Scholar
  13. 13.
    Recommendation for key management—Part1: General. Gaithersburg, MD, USA, August, pp. 800-57. Special Publication (2005)Google Scholar
  14. 14.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_13 CrossRefGoogle Scholar
  15. 15.
    Choon, J.C., Hee Cheon, J.: An identity-based signature from gap Diffie-Hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2003). doi: 10.1007/3-540-36288-6_2 CrossRefGoogle Scholar
  16. 16.
    Du, H.Z., Wen, Q.Y.: An efficient identity-based short signature Scheme from bilinear pairings. In: Proceedings of International Conference CIS, pp. 725–729 (2007)Google Scholar
  17. 17.
    Lim, H.W., Robshaw, M.J.B.: On ientity-based cryptography and grid computing. In: Bubak, M., Albada, G.D., Sloot, Peter, M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3036, pp. 474–477. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24685-5_69 CrossRefGoogle Scholar
  18. 18.
    Lim, H.W., Robshaw, M.J.B.: A dynamic key infrastructure for grid. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 255–264. Springer, Heidelberg (2005). doi: 10.1007/11508380_27 CrossRefGoogle Scholar
  19. 19.
    Mao, W.: An identity-based non-interactive authentication framework for computational grids. Technical report HPL-2004-96, HP Labs, Palo Alto, CA, USA (2004)Google Scholar
  20. 20.
    Li, H., Dai, Y., Tian, L., Yang, H.: Identity-based authentication for cloud computing. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 157–166. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10665-1_14 CrossRefGoogle Scholar
  21. 21.
    Hughes, V.S.: Information hiding, anonymity and privacy a modular approach. J. Comput. Security 12(1), 3–36 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tsai, J.L., Lo, N.W., Wu, T.C.: Novel anonymous authentication scheme using smart cards. IEEE Trans. Ind. Inform. 9(4), 2004–2013 (2013)CrossRefGoogle Scholar
  23. 23.
    Tsai, J.L., Lo, N.W.: A privacy-aware authentication scheme for distributed mobile cloud computing services. Syst. J. 9(3), 805–815 (2015)Google Scholar
  24. 24.
    Das, M.L., Saxena, A., Gulati, V.P., Phafstak, D.B.: A novel remote user authentication scheme using bilinear pairings. Comput. Secur. 25(3), 184–189 (2006)CrossRefGoogle Scholar
  25. 25.
    Chou, J.S., Chen, Y., Lin, J.Y.: Improvement of Das et al.’s remote user authentication scheme. Cryptology ePrint Archive (2005)Google Scholar
  26. 26.
    Goriparthia, T., Das, M.L., Saxena, A.: An improved bilinear pairing based remote user authentication scheme. Comput. Std. Interfaces 31(1), 181–185 (2009)CrossRefGoogle Scholar
  27. 27.
    Khan Pathan, A.S., Hong, C.S., Hee, K.: Bilinear-pairing-based remote user authentication schemes using smart cards. In Proceedings of 3rd International Conference Ubiquitous Information Management Communication, pp. 356–361 (2009)Google Scholar
  28. 28.
    Chen, T.H., Yeh, H.L., Shih, W.K.: An advanced ECC dynamic ID-based remote mutual authentication scheme for cloud computing. In: International Conference on Multimedia Ubiquitous Engineering, pp. 155–159 (2011)Google Scholar
  29. 29.
    Wang, D., Mei, Y., Ma, C., Cui, Z.: Comments on an advanced dynamic ID-based authentication scheme for cloud computing. In: Wang, F.L., Lei, J., Gong, Z., Luo, X. (eds.) WISM 2012. LNCS, vol. 7529, pp. 246–253. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33469-6_34 CrossRefGoogle Scholar
  30. 30.
    Sun, H., Wen, Q., Zhang, H., Jin, Z.: A novel remote user authentication and key agreement scheme for mobile client–server environment. Appl. Math. Inf. Sci. 7(4), 1365–1374 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Mathematical ScienceUniversity of JinanShandongChina

Personalised recommendations