Research on Detection and Trend Forecasting Technologies of Micro-blog Hot Topic

  • Qi FuEmail author
  • Jun Tan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 699)


Based on the collection and study of the extensive literature, this paper concludes and classifies the detection and forecasting technologies and its current application status in the micro-blog hot topic. Furthermore, combined with research characteristics of the detection and prediction of micro-blog hot topic and including the domestic characteristics, we draw out the limitations of the current related research, and point out the direction for further improvements. Finally, it has carried on the forecast on the future prospect.


Micro-blog Hot topic detection Hot trend prediction Review 



In this paper, the research was sponsored by the subject of Jiangxi “Twelfth Five-Year” plan for Social Science (Project No. 15TQ07).


  1. 1.
    Yang, L., Lin, Y., Lin, H.: Micro-blog hot events discovery based on affective distribution. Chin. J. Inf. 26(1), 84–90 (2012). (in Chinese)MathSciNetGoogle Scholar
  2. 2.
    Zheng, F., Miao, D., Zhang, Z.: A method of Chinese micro-blog news topic detection. Comput. Sci. 39(1), 138–141 (2012). (in Chinese)Google Scholar
  3. 3.
    Lee, C.-H., Wu, C.-H., Chien, T.-F.: BursT: a dynamic term weighting scheme for mining microblogging messages. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011. LNCS, vol. 6677, pp. 548–557. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21111-9_62 CrossRefGoogle Scholar
  4. 4.
    Lee, C.: Mining spatio-temporal information on micro-blog streams using a density-based online clustering method. Expert Syst. Appl. 39(10), 9623–9641 (2012)CrossRefGoogle Scholar
  5. 5.
    Long, R., Wang, H., Chen, Y., Jin, O., Yu, Y.: Towards effective event detection, tracking and summarization on microblog data. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds.) WAIM 2011. LNCS, vol. 6897, pp. 652–663. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23535-1_55 CrossRefGoogle Scholar
  6. 6.
    Weng, J., Lee, B.: Event detection in Twitter. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, pp. 401–408. AAAI, Barcelona (2011)Google Scholar
  7. 7.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM, Raleigh (2010)Google Scholar
  8. 8.
    Zhang, C., Sun, J., Ding, Y.: Micro-blog theme mining based on MB-LDA model. Comput. Res. Dev. 48(10), 1795–1802 (2012). (in Chinese)Google Scholar
  9. 9.
    Li, J., Zhang, H., Wu, H.: Chinese micro-blog hot topic mining system based on specific domain—BtopicMiner. Comput. Appl. 32(8), 2346–2349 (2012). (in Chinese)Google Scholar
  10. 10.
    Phuvipadawat, S., Murata, T.: Breaking news detection and tracking in Twitter. In: Proceedings of the 2010 International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, pp. 120–130 (2010)Google Scholar
  11. 11.
    Tong, W., Chen, W., Meng, X.: EDM: micro-blog event detection algorithm. Accessed 26 Feb 2013. (in Chinese)
  12. 12.
    Gupta, M., Zhao, P., Han, J.: Evaluating event credibility on Twitter. Accessed 07 Feb 2012
  13. 13.
    Yang, G.: Micro blog hot topic discovery strategy research. Zhejiang University master’s degree thesis, Hangzhou (2011). (in Chinese)Google Scholar
  14. 14.
    Jamali, S., Rangwala, H.: Digging digg: comment mining, popularity prediction, and social network analysis. In: Proceedings of International Conference on Web Information Systems and Mining, Shanghai, pp. 32–38 (2009)Google Scholar
  15. 15.
    Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in Twitter. In: Proceedings of the 20th International Conference on World Wide Web (WWW), pp. 57–58 (2011)Google Scholar
  16. 16.
    Gomez, V., Kaltenbrunner, A., Lopez, V.: Statistical analysis of the social network and discussion threads in Slashdot. In: The Proceedings of the 17th International Conference on World Wide Web (WWW), Beijing, China, pp. 645–654 (2008)Google Scholar
  17. 17.
    Zhu, T.: Research on the role of nodes and community evolution in social networks. Doctoral dissertation, Beijing University of Posts and Telecommunications, Beijing (2011). (in Chinese)Google Scholar
  18. 18.
    Wu, S., Hofman, J.M., Mason, W.A.: Who says what to whom on Twitter. In: Proceedings of the 20th International Conference on World Wide Web (WWW), pp. 705–714 (2011)Google Scholar
  19. 19.
    Sun, S.: Hot topic detection and tracking technology in Chinese micro blog. Master degree thesis of Beijing Jiaotong University, Beijing (2011). (in Chinese)Google Scholar
  20. 20.
    Cha, M., Haddadi, H., Benevenuto, F.: Measuring user influence on Twitter: the million follower fallacy. In: Proceeding of the 4th International AAAI Conference on Weblogs and Social Media (2010)Google Scholar
  21. 21.
    Romero, D.M., Galuba, W., Asur, S., Huberman, B.A.: Influence and passivity in social media. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 18–33. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23808-6_2 CrossRefGoogle Scholar
  22. 22.
    Yu, L., Asur, S., Huberman, B.A.: Artificial inflation: the true story of trends in SinaWeibo, arXiv preprint arXiv:1202.0327 (2012)
  23. 23.
    Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in Twitter. In: Proceedings of the 20th International Conference on World Wide Web (WWW), pp. 57–58 (2011)Google Scholar
  24. 24.
    Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: conversational aspects of retweeting on Twitter. In: 43rd Hawaii International Conference on System Sciences (2010)Google Scholar
  25. 25.
    Suh, B., Hong, L., Pirolli, P., Chi, H.: Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network. In: IEEE Second International Conference on Social Computing (SocialCom), pp. 177–184. IEEE (2010)Google Scholar
  26. 26.
    Welch, J., He, D., Schonfeld, U., Cho, J.: Topical semantics of Twitter links. In: WSDM 2011 (2011)Google Scholar
  27. 27.
    Petrovic, S., Osborne, M., Lavrenko, V.: RT to win! Predicting message propagation in Twitter. In: AAAI 2011 (2011)Google Scholar
  28. 28.
    Zaman, T.R., Herbrich, R., Gael, J.V., Stern, D.: Predicting information spreading in Twitter. In: Workshop on Computational Social Science and the Wisdom of Crowds, NIP 2010 (2010)Google Scholar
  29. 29.
    Zhang, Y., Lu, R., Yang, Q.: Prediction of the forwarding behavior of micro blog. J. Chin. Inf. 26(4), 109–114 (2012). (in Chinese)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Communications and ElectronicsJiangxi Science & Technology Normal UniversityNanchangChina
  2. 2.Physical Education InstituteJiangxi University of Finance and EconomicsNanchangChina

Personalised recommendations