Advertisement

Progressive Network Transmission Method Research of Vector Data

  • Shengli Wang
  • Zezhong ZhengEmail author
  • Chengjun Pu
  • Mingcang Zhu
  • Yong He
  • Zhiqing Huang
  • Yicong Feng
  • Mengge Tian
  • Jiang Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 699)

Abstract

Vector data contains a lot of important features. Progressive transmission is a key technology to solve the real-time rendering and network transmission of vector data. By studying the traditional progressive transmission method of vector data and considering the spatial position and geometric features of vector data, we proposed an efficient progressive transmission method. We divided the vector data into blocks based on spatial location, then applied a Visvalingam-Whyatt algorithm to build a multi-scale model. Finally the progressive transmission of vector data was achieved. Our method satisfies the viewer’s needs to display data from different rendering scale and has important significance for client users to interact in real time.

Keywords

Vector data Visvalingam-Whyatt Progressive transmission 

References

  1. 1.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  2. 2.
    Huang, B., Jiang, B., Li, H.: An integration of GIS, virtual reality and the internet for visualization, analysis and exploration of spatial data. Int. J. Geogr. Inf. Sci. 15(5), 439–456 (2001)CrossRefGoogle Scholar
  3. 3.
    Bertolotto, M., Egenhofer, M.J.: Progressive transmission of vector map data over the World Wide Web. GeoInformatica 5(4), 345–373 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Buttenfield, B.P.: Transmitting vector geospatial data across the internet. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 51–64. Springer, Heidelberg (2002). doi: 10.1007/3-540-45799-2_4 CrossRefGoogle Scholar
  5. 5.
    Weibel, R., Dutton, G.: Generalising spatial data and dealing with multiple representations. Geogr. Inf. Syst. 1, 125–155 (1999)Google Scholar
  6. 6.
    Bi-sheng, Y., Bi-jun, L.: State-of-the-art of the progressive transmission of spatial data over the internet. J. Image Graph. 6, 006 (2009)Google Scholar
  7. 7.
    Taylor, G.: Line simplification algorithms (2005). Accessed 15 Apr 2005Google Scholar
  8. 8.
    Kolesnikov, A.: Vector maps compression for progressive transmission. In: 2nd International Conference on Digital Information Management, ICDIM 2007, vol. 1, pp. 81–86. IEEE (2007)Google Scholar
  9. 9.
    Lindstrom, P., Pascucci, V.: Terrain simplification simplified: a general framework for view-dependent out-of-core visualization. IEEE Trans. Vis. Comput. Graph. 8(3), 239–254 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Shengli Wang
    • 1
    • 2
  • Zezhong Zheng
    • 2
    Email author
  • Chengjun Pu
    • 2
  • Mingcang Zhu
    • 3
  • Yong He
    • 4
  • Zhiqing Huang
    • 5
  • Yicong Feng
    • 5
  • Mengge Tian
    • 2
  • Jiang Li
    • 6
  1. 1.Key Laboratory of Urban Land Resources Monitoring and SimulationMinistry of Land and ResourcesShenzhenPeople’s Republic of China
  2. 2.School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  3. 3.Land and Resources Department of Sichuan ProvinceChengduPeople’s Republic of China
  4. 4.Sichuan Institute of Geo-Environment MonitoringChengduPeople’s Republic of China
  5. 5.Information CenterLand and Resources Department of Sichuan ProvinceChengduPeople’s Republic of China
  6. 6.Department of Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations