Advertisement

The Research of 3D Geological Modeling in the Main Mining Area and East Mining Area of BayanObo Deposit

  • Mingchao ZhangEmail author
  • Jingchao Li
  • Yike Li
  • Qunchao Zuo
  • Lei Yao
  • Hui Chen
  • Wanjuan Liang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 699)

Abstract

BayanObo deposit in Inner Mongolia, an ultra-large REE-Nb-Fe deposit with various ores and mineralized elements, is currently the world’s largest rare earth deposit, and has special mineralization. The deposit has strategic significance in China. Applying the professional software of three-dimension (3D) geological modeling with advanced theories and methods, a 3D visualization model of deposit in the main mining area and east mining area, including 3D engineering model, 3D terrain model, 3D rock mass model and 3D ore bodies model, which clarifies the spatial distribution of REE-Nb-Fe in BayanObo deposit in visualization way, and provides scientific basis for proving deep formation and boundary of ore body, calculating resource reserve, and well developing and protecting rare earth resource.

Keywords

3D geological modeling The main mining area The east mining area BayanObo deposit Inner Mongolia 

Notes

Acknowledgments

This work was supported by the Project “Research and development of geological information product system and social service” (No. DD20160353) of China Geological Survey.

References

  1. 1.
    Bai, G., Yuan, Z.: Genetic Analysis of Bayan Obo Ore Deposit. China Academy of Geological Sciences Institute of Geology of Mineral Deposits, Beijing (1983)Google Scholar
  2. 2.
    Zhou, J., Zheng, Y., Yang, X., Shu, Y., Wei, C., Xie, Z.: Paleo plate tectonics and regional geology at Bayan Obo in Northern Inner Mongolia. Geol. J. China Univ. 8(1), 46–61 (2002)Google Scholar
  3. 3.
    Liu, Y.: Geomatics and Earth Observation Science (EOS) for disaster management: an overview. J. Geomech. 14(3), 212–220 (2008)Google Scholar
  4. 4.
    Christian, J.: 3D geoscience modeling: computer techniques for geological characterization. Earth-Sci. Rev. 40(3–4), 299–301 (1994)Google Scholar
  5. 5.
    Mark, J.: Three-dimensional geological modelling of potential-field data. Comput. Geosci. 27(4), 455–465 (1994)Google Scholar
  6. 6.
    Ehlen, J., Harmon, R.: GeoComp 99: GeoComputation and the Geosciences. Comput. Geosci. 27(27), 899–900 (2001)CrossRefGoogle Scholar
  7. 7.
    Li, Y., Guosheng, Q., Chen, J.: Realization of 3D subsurface geological modeling software in urban areas based on borehole data. Geol. Bull. China 24(5), 470–475 (2005)Google Scholar
  8. 8.
    Zeng, Q., He, X.: Mathematical model and display method of three dimensional geological modeling. Eng. Geol. Comput. Appl. 3, 1–8 (2006)Google Scholar
  9. 9.
    Wang, M., Bai, Y.: The status quo and development tendency of 3D geosciences modeling. Soil Eng. Found. 20(4), 27–29 (2006)Google Scholar
  10. 10.
    Hou, E., Wu, L.: Present state and developing trend in the research on main issues of – 3D geoscience modeling. Coal Geol. Explor. 28(6), 5–8 (2000)Google Scholar
  11. 11.
    Wang, R., Li, Y., Liu, Y., Xiang, Z.: Import and determination methods for virtual borehole in geo -3D modeling. Geol. Prospect. 43(3), 102–107 (2007)Google Scholar
  12. 12.
    Fan, H., Xie, Y., Wang, K., Wilde, S.: Methane-rich fluid inclusions in skarn near the giant REE-Nb-Fe deposit at Bayan Obo, Northern China. Ore Geol. Rev. 25(3), 301–309 (2004)CrossRefGoogle Scholar
  13. 13.
    Yang, K., Fan, H., Fangfang, H., Li, X.: Skarnization age in the giant Bayan Obo REE-Nb-Fe Ore district, Inner Mongolia, China: Rb-Sr isochrone dating on single-grain phlogopite. Acta Petrol. Sin. 23(5), 1018–1022 (2007)Google Scholar
  14. 14.
    Qingrun, M.: The genesis of the host rock-dolomite of the Bayan Obo Iron Ore deposits and the analysis of its sedimentary environment. Geol. Rev. 5, 012 (1982)Google Scholar
  15. 15.
    Zeng, Y., Wang, F., He, Z.: Study on composition of inclusions in minerals and simulation experiment on hydrothermal metasomatic process of the Bayan Obo Iron deposit. Acta Geol. Sin.-Engl. Ed. 60(4), 43–55 (1986)Google Scholar
  16. 16.
    Drew, L., Meng, Q., Sun, W.: The Bayan Obo Iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos 26(1–2), 43–65 (1990)CrossRefGoogle Scholar
  17. 17.
    Bas, M., Kellere, J., Tao, K.: Carbonatite dykes at Bayan Obo, Inner Mongolia, China. Mineral. Petrol. 46(3), 195–228 (1992)CrossRefGoogle Scholar
  18. 18.
    Campbell, L., Henderson, P.: Apatite paragenesis in the Bayan Obo REE-Nb-Fe Ore deposit, Inner Mongolia, China. Lithos 42(1), 89–103 (1997)CrossRefGoogle Scholar
  19. 19.
    Yang, X., Bas, M.: Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis. Lithos 72(1–2), 97–116 (2004)CrossRefGoogle Scholar
  20. 20.
    Zhang, F., Zhao, Z., Li, Y.: Reduction kinetics of Bayan Obo coexisted iron and niobium ore by carbon-bearing pellet. Adv. Mater. Res. 418–420, 346–352 (2011)CrossRefGoogle Scholar
  21. 21.
    Xu, C., Taylor, R., Li, W.: Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo, China. J. Asian Earth Sci. 57(6), 76–89 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Mingchao Zhang
    • 1
    • 2
    Email author
  • Jingchao Li
    • 1
  • Yike Li
    • 3
  • Qunchao Zuo
    • 1
  • Lei Yao
    • 1
  • Hui Chen
    • 1
  • Wanjuan Liang
    • 1
  1. 1.Development Research Center of China Geological SurveyBeijingChina
  2. 2.Faculty of Earth Sciences and ResourcesChina University of GeosciencesBeijingChina
  3. 3.Research Center for Strategy of Global Mineral ResourceChinese Academy of Geological SciencesBeijingChina

Personalised recommendations