Monitoring Landslides Using Multi-frequency SAR Data in Danba County, Sichuan Province, China

  • Yansheng Ding
  • Jie DongEmail author
  • Lu Zhang
  • Mingsheng Liao
  • Yang Zhou
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 699)


Danba County, located at the northwestern Sichuan, is one of the areas prone to severe landslides in China. The landslides in this area present great threaten upon the local public safety and the famous heritage architectures. Therefore, monitoring landslide is of great importance for the sustainable developments in Danba. In this paper, InSAR techniques is employed to investigate typical landslide activities, based on the multi-frequency SAR images acquired from C-band Envisat, X-band TerraSAR-X, and L-band ALOS-1/2 satellites. Firstly, differential InSAR (D-InSAR) is used to recognize known landslides and find potential unstable slopes in a region scale. Then, for a specific landslide, advanced multi-temporal InSAR method is exploited to characterize its surface deformation by obtaining time-series displacement on coherent targets. Furthermore, the triggering factors are discussed based on the deformation results and on-site surveys.


Landslides InSAR Multi-frequency PSInSAR Deformation monitoring 



The authors thank DLR for providing the TerraSAR-X datasets through the General AO project (GEO0606), ESA for providing Envisat ASAR data through the Dragon-3 project (ID 10569), and JAXA for providing the ALOS-1/2 datasets through ALOS RA4 project (No. 1247 and 1440).


  1. 1.
    Crosetto, M., Crippa, B., Biescas, E., Monserrat, O., Agudo, M., Fernández, P.: Land deformation measurement using SAR interferometry: state-of-the-art. Photogrammetrie Fernerkundung Geoinformation 2005, 497 (2005)Google Scholar
  2. 2.
    Liu, P., Li, Z., Hoey, T., Kincal, C., Zhang, J., Zeng, Q., et al.: Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. Int. J. Appl. Earth Obs. Geoinf. 21, 253–264 (2013)CrossRefGoogle Scholar
  3. 3.
    Ferretti, A., Prati, C., Rocca, F.: Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 39, 8–20 (2001)CrossRefGoogle Scholar
  4. 4.
    Ferretti, A., Prati, C., Rocca, F.: Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 38, 2202–2212 (2000)CrossRefGoogle Scholar
  5. 5.
    Hooper, A., Segall, P., Zebker, H.: Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. 112, B07407-1 (2007)CrossRefGoogle Scholar
  6. 6.
    Hooper, A., Bekaert, D., Spaans, K., Arıkan, M.: Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514, 1–13 (2012)CrossRefGoogle Scholar
  7. 7.
    Colesanti, C., Ferretti, A., Novali, F., Prati, C., Rocca, F.: SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens. 41, 1685–1701 (2003)CrossRefGoogle Scholar
  8. 8.
    Hilley, G.E., Roland, B., Alessandro, F., Fabrizio, N., Fabio, R.: Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304, 1952–1955 (2004)CrossRefGoogle Scholar
  9. 9.
    Shi, X., Zhang, L., Liao, M., Balz, T.: Deformation monitoring of slow-moving landslide with L- and C-band SAR interferometry. Remote Sens. Lett. 5, 951–960 (2014)CrossRefGoogle Scholar
  10. 10.
    Tantianuparp, P., Shi, X., Zhang, L., Balz, T., Liao, M.: Characterization of landslide deformations in Three Gorges area using multiple InSAR data stacks. Remote Sens. 5, 2704–2719 (2013)CrossRefGoogle Scholar
  11. 11.
    Cascini, L., Fornaro, G., Peduto, D.: Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng. Geol. 112, 29–42 (2010)CrossRefGoogle Scholar
  12. 12.
    Handwerger, A.L., Roering, J.J., Schmidt, D.A.: Controls on the seasonal deformation of slow-moving landslides. Earth Planet. Sci. Lett. 377–378, 239–247 (2013)CrossRefGoogle Scholar
  13. 13.
    Herrera, G., Gutiérrez, F., García-Davalillo, J.C., Guerrero, J., Notti, D., Galve, J.P., et al.: Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 128, 31–43 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yansheng Ding
    • 1
  • Jie Dong
    • 2
    Email author
  • Lu Zhang
    • 2
  • Mingsheng Liao
    • 2
    • 3
  • Yang Zhou
    • 4
  1. 1.Southwest China Branch of State Grid Corporation of ChinaChengduChina
  2. 2.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina
  3. 3.Collaborative Innovation Center for Geospatial TechnologyWuhan UniversityWuhanChina
  4. 4.Beijing North-Star Technology Development Co., Ltd.BeijingChina

Personalised recommendations