Advertisement

Area Constrained Space Information Flow

  • Alfred Uwitonze
  • Jiaqing HuangEmail author
  • Yuanqing Ye
  • Wenqing Cheng
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 699)

Abstract

Departing from Network Information Flow (NIF) that studies network coding in graphs, Space Information Flow (SIF) is a new research direction that studies network coding in geometric space, such as Euclidean space. This work focuses on the problem of Area Constrained Space Information Flow (ACSIF), which is a more practical branch of SIF that considers the constraint on the area where the candidate relay nodes should be placed. One of the key open problems in ACSIF is to design the algorithms that compute the min-cost in multicast networks. This work proposes the first heuristic algorithm based on Delaunay Triangulation (DT) and Linear Programming (LP) techniques that can build a min-cost multicast communication network for N (N ≥ 3) given terminal nodes in 2-D Euclidean space by taking into account the constrained area enclosed in circle with radius R around the terminal nodes. The proposed algorithm has a polynomial computational complexity and the simulation results show that it is effective.

Keywords

Space information flow Network coding in space Network information flow Network coding Delaunay triangulation 

Notes

Acknowledgments

This research was supported by National Natural Science Foundation of China (No. 61271227).

References

  1. 1.
    Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Li, Z., Wu, C.: Space information flow: multiple unicast. In: Proceedings of IEEE ISIT, pp. 1897–1901 (2012)Google Scholar
  3. 3.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)CrossRefGoogle Scholar
  4. 4.
    Huang, J., Yin, X., Zhang, X., Du, X., Li, Z.: On space information flow: single multicast. In: Proceedings of IEEE NetCod, pp. 1–6 (2013)Google Scholar
  5. 5.
    Huang, J., Li, Z.: A recursive partitioning algorithm for space information flow. In: Proceedings of IEEE GLOBECOM, pp. 1460–1465 (2014)Google Scholar
  6. 6.
    Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Van Laarhoven, J.M.: Exact and heuristic algorithms for the Euclidean Steiner tree problem. Ph.D. thesis, University of Iowa (2010)Google Scholar
  8. 8.
    Yin, X., Wang, Y., Wang, X., Xue, X., Li, Z.: Min-cost multicast networks in Euclidean space. In: Proceedings of IEEE ISIT, pp. 1316–1320 (2012)Google Scholar
  9. 9.
    Xiahou, T., Li, Z., Wu, C., Huang, J.: A geometric perspective to multiple-unicast network coding. IEEE Trans. Inf. Theory 60(5), 2884–2895 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hu, Y., Niu, D., Li, Z.: Internet video multicast via constrained space information flow. IEEE MMTC E-Lett. 9(2), 17–19 (2014)Google Scholar
  11. 11.
    Smith, J.M., Lee, D.T., Liebman, J.S.: An O(n log n) heuristic for Steiner minimal tree problems on the Euclidean metric. Networks 11(1), 23–39 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, Z.: Min-cost multicast of selfish information flows. In: Proceedings of IEEE INFOCOM, pp. 231–239 (2007)Google Scholar
  13. 13.
    Winter, P., Zachariasen, M.: Euclidean Steiner minimum trees: an improved exact algorithm. Networks 30(3), 149–166 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Alfred Uwitonze
    • 1
  • Jiaqing Huang
    • 1
    Email author
  • Yuanqing Ye
    • 2
  • Wenqing Cheng
    • 1
  1. 1.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations