System Locating License Plates with Shadow Based on Self-adaptive Window Size Technique

  • Jingyu DunEmail author
  • Sanyuan Zhang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 699)


Most of the existing license plate localization algorithms have a parameter that is related to the size of the license plate. There is no parameter that is suitable for all the cases. In this paper, an algorithm is proposed to automatically compute the size-related parameter. Then a hierarchical system based on the self-adaptive parameter is proposed to locate license plates. Both connected component based methods and vertical edge based methods are used. The parameter is first used as the local window size to suppress the shadow. Then it is used to connect the discrete vertical edges to form a license plate region. The proposed system is used to locate license plates with shadow, and experiments are taken on images with different resolutions. The total localization accuracy achieves 94.40%. It can compete with the state-of-the-art methods and need not determine the optimal parameter by trial and error.


License plate localization Self-adaptive window size Shadow suppression 



This research work was supported by China Natural Science Foundation (No: 61272304) and Zhejiang Provincial Natural Science Foundation of China (No. LY15F020024).


  1. 1.
    Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Loumos, V., Kayafas, E.: A license plate-recognition algorithm for intelligent transportation system applications. IEEE Trans. Intell. Transp. Syst. 7(3), 377–392 (2006)CrossRefGoogle Scholar
  2. 2.
    Bernsen, J.: Dynamic thresholding of grey-level images. In: Proceedings of Eighth International Conference on Pattern Recognition, Paris, pp. 1251–1255 (1986)Google Scholar
  3. 3.
    Chen, Z., Chang, F., Liu, C.: Chinese license plate recognition based on human vision attention mechanism. Int. J. Pattern Recogn. Artif. Intell. 27(08), 1350024 (2013)CrossRefGoogle Scholar
  4. 4.
    Dehshibi, M.M., Allahverdi, R.: Persian vehicle license plate recognition using multiclass adaboost. Int. J. Comput. Electr. Eng. 4(3), 355–358 (2012)CrossRefGoogle Scholar
  5. 5.
    Jiao, J., Ye, Q., Huang, Q.: A configurable method for multi-style license plate recognition. Pattern Recogn. 42(3), 358–369 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Khurshid, K., Faure, C.: Comparison of Niblack inspired binarization methods for ancient documents. In: Document Recognition and Retrieval XVI, DRR, Document Recognition and Retrieval Conference, pp. 1–10 (2009)Google Scholar
  7. 7.
    Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recogn. 19(1), 41–47 (1986)CrossRefGoogle Scholar
  8. 8.
    Lalimi, M.A., Ghofrani, S., Mclernon, D.: A vehicle license plate detection method using region and edge based methods. Comput. Electr. Eng. 39(3), 834–845 (2013)CrossRefGoogle Scholar
  9. 9.
    Li, B., Tian, B., Li, Y., Wen, D.: Component-based license plate detection using conditional random field model. IEEE Trans. Intell. Transp. Syst. 14(4), 1690–1699 (2013)CrossRefGoogle Scholar
  10. 10.
    Niblack, W.: An introduction to digital image processing. Master’s thesis, Strandberg Publishing Company (1985)Google Scholar
  11. 11.
    Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 183–196. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88688-4_14 CrossRefGoogle Scholar
  12. 12.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Peng, Y., Xu, M., Jin, J.S., Luo, S., Zhao, G.: Cascade-based license plate localization with line segment features and haar-like features. In: 2011 Sixth International Conference on Image and Graphics (ICIG), pp. 1023–1028 (2011)Google Scholar
  14. 14.
    Rasooli, M., Ghofrani, S., Fatemizadeh, E.: Farsi license plate detection based on element analysis and characters recognition. Int. J. Sig. Process. Image Process. Pattern Recogn. 4(4), 697–700 (2011)Google Scholar
  15. 15.
    Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  16. 16.
    Wen, Y., Lu, Y., Yan, J., Zhou, Z., Deneen, K.M., Shi, P.: An algorithm for license plate recognition applied to intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 12(3), 830–845 (2011)CrossRefGoogle Scholar
  17. 17.
    Zheng, L., He, X., Samali, B., Yang, L.T.: An algorithm for accuracy enhancement of license plate recognition. J. Comput. Syst. Sci. 79(2), 245–255 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations