Soft Computing Approach to Electrical Transmission Network Congestion Management

  • Debapriya Sur MukhopadhyayEmail author
  • Reshmi Chanda
  • Debjani Chakraborti
  • Papun BiswasEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 11)


In this paper an efficient technique is described for managing the congestion in electric transmission network based on rescheduling the nearby generators and/or shedding some of the loads. To incorporate the uncertainty in the system objectives and parameters, fuzzy environment is considered for the formulation of the problem. In the solution process bio-inspired computational technique, genetic algorithm (GA) is used. The approach is illustrated by standard IEEE 30-bus 6-generator test system.


Congestion management Fuzzy set Fuzzy programming Fuzzy goal programming Genetic algorithm Load shedding 


  1. 1.
    Bhattacharya, K., Bollen, M., Daalder, J.E.: Operation of Restructured Power Systems. Springer, US (2001)CrossRefGoogle Scholar
  2. 2.
    El Abiad, A.H., Stagg, G.S.: Automatic evaluation of power system performance-effect of line and transformer outages. AIEE Trans. PAS-81, 712–716 (1963)Google Scholar
  3. 3.
    Mamandur, K.R.C., Berg, G.J.: Economic shift in electric power generation with line flow constraints. IEEE Trans. Power Appar. Syst. PAS-97(7), 1618–1626 (1978)Google Scholar
  4. 4.
    Medicherla, T.K.P., Billinton, R., Sachdev, M.S.: Generation rescheduling and load shedding to alleviate line overload—analysis. IEEE Trans. Power Appar. Syst. PAS-98(6), pp. 1876–1884 (1979)Google Scholar
  5. 5.
    Finney, J.D., Othman, H.A., Rutz, W.L.: Evaluating transmission congestion constraints in system planning. IEEE Trans. Power Syst. 12(3), 1143–1149 (1997)CrossRefGoogle Scholar
  6. 6.
    Fang, R.S., David, A.K.: An integrated congestion management strategy for real time system operation. IEEE Power Eng. Rev. 19(5), 52–53 (1999)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Song, Y.H.: Advanced real-time congestion management through both pool balancing market and bilateral market. IEEE Power Eng. Rev. 20(2), 47–49 (2000)CrossRefGoogle Scholar
  8. 8.
    Rau, N.S.: Transmission loss and congestion cost allocation: an approach based on responsibility. IEEE Trans. Power Syst. 15(4), 1401–1409 (2000)CrossRefGoogle Scholar
  9. 9.
    Fuerte-Esquivel, C.R., Acha, E., Ambriz-Perez, H.A.: Thyristor controlled series compensator model for the power flow solution of practical power networks. IEEE Trans. Power Syst. 15(1), 58–64 (2000)CrossRefGoogle Scholar
  10. 10.
    Lee, K.-H.: Optimal siting of TCSC for reducing congestion cost by using shadow prices. Int. J. Electr. Power Energy Syst. 24, 647–653 (2002)CrossRefGoogle Scholar
  11. 11.
    Rodrigues, A.B., DaSilva, M.G.: Impact of multilateral congestion management on the reliability of power transactions. Int. J. Electr. Power Energy Syst. 25, 113–132 (2003)CrossRefGoogle Scholar
  12. 12.
    Milano, F., Canizares, C.A., Invernizzi, M.: Multi-objective optimization for pricing system security in electricity markets. IEEE Trans. Power Syst. 18(2), 596–604 (2003)CrossRefGoogle Scholar
  13. 13.
    Kumar, A., Srivastava, S.C., Singh, S.N.: A zonal congestion management approach using real and reactive power rescheduling. IEEE Trans. Power Syst. 18(1), 554–562 (2004)CrossRefGoogle Scholar
  14. 14.
    Talukdar, B.K., Sinha, A.K., Mukhopadhyay, S., Bose, A.: A computationally simple method for cost-efficient generation rescheduling and load shedding for congestion management. Int. J. Electr. Power Energy Syst. 27(5–6), 379–388 (2005)CrossRefGoogle Scholar
  15. 15.
    Pearl, J.: HeuristICS: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, New York (1983)Google Scholar
  16. 16.
    Hazra, J., Sinha, K.A.: Congestion management using multi objective particle swarm optimization. IEEE Trans. Power Syst. 22(4), 1726–1734 (2007)CrossRefGoogle Scholar
  17. 17.
    Dutta, S., Singh, S.P.: Optimal rescheduling of generator for congestion management based on particle swarm intelligence. IEEE Trans. Power Syst. 23(4), 1560–1569 (2008)CrossRefGoogle Scholar
  18. 18.
    Balaraman, S., Kamaraj, N.: Congestion management using hybrid particle swarm optimization technique. Int. J. Swarm Intell. Res. 1(3), 51–66 (2010)CrossRefGoogle Scholar
  19. 19.
    Hazra, J., Sinha, A.K.: Identification of catastrophic failures in power system using pattern recognition and fuzzy estimation. IEEE Trans. Power Syst. 24(1), 378–387 (2009)CrossRefGoogle Scholar
  20. 20.
    Nouri, H., Tang, S.H., Tuah, B.T.H., Anuar, M.K.: BASE: A bacteria foraging algorithm for cell formation with sequence data. J. Manuf. Syst. 2–3, pp. 102–110 (2010)Google Scholar
  21. 21.
    Venkaiah, C.H., Vinod Kumar, D.M.: Fuzzy adaptive bacterial foraging congestion management using sensitivity based optimal active power re-scheduling of generator. Appl. Soft Comput. 11(8), 4921–4930 (2011)CrossRefGoogle Scholar
  22. 22.
    Vijaya Kumar, J., Vinod Kumar, D.M., Edukondalu, K.: Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Appl. Soft Comput. 13(5), 2445–2455 (2013)CrossRefGoogle Scholar
  23. 23.
    Awerbach, S., Ecker, J.G., Wallace, W.A.: A note: hidden nonlinearities in the application of goal programming. Manage. Sci. 22, 918–920 (1976)CrossRefzbMATHGoogle Scholar
  24. 24.
    Pal, B.B., Sen, S., Kumar, M.: A linear approximation approach to chance constrained multiobjective decision making problems. In: IEEE Xplore, pp. 70–75 (2009). Online: IEEEDigital Library. doi: 10.1109/ICADVC.2009.5378202
  25. 25.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Reading, MA (1989)zbMATHGoogle Scholar
  26. 26.
    Zimmermann, H.-J.: Fuzzy Sets, Decision Making and Expert Systems. Kluwer Academic Publisher, Boston (1987)CrossRefGoogle Scholar
  27. 27.
    Sakawa, M., Nishizaki, I.: Cooperative and Non-cooperative Multi-level Programming. Springer, New York (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Chandernagore Municipal CorporationChandannagarIndia
  2. 2.Abacus Institute of Engineering and ManagementMograIndia
  3. 3.Narula Institute of TechnologyAgarparaIndia
  4. 4.JIS College of EngineeringKalyaniIndia

Personalised recommendations