Skip to main content

Optimization of E-Jet Based Micro-manufacturing Process Using Desirability Function Analysis

  • Conference paper
  • First Online:
Industry Interactive Innovations in Science, Engineering and Technology

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 11))

Abstract

Electrohydrodynamic (EHD) printing is a micro- and nano-manufacturing process of printing high-resolution functional material on a substrate. It is a very exciting alternative to the conventional inkjet printing technology for micro-droplet generation. In this work, an approach has been made to tune the process control parameters to achieve better functioning of the printing process. The droplet size and the printing frequency have been taken as performance measure of the printing process whereas applied voltage, back pressure, and nozzle standoff height have been selected as the process parameters which are to be tuned through optimization. Desirability function analysis have been employed to optimize the process parameters for multiple output variables simultaneously. Composite desirability values have been computed and based on these values; the optimal process parameters which leads to better printing performance have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J.B., Demello, A.J.: Microdroplets: a sea of applications? Lab Chip 8, 1244–1254 (2008). doi:10.1039/b806405a

    Article  Google Scholar 

  2. Barton, K., Mishra, S., Alleyne, A., Ferreira, P., Rogers, J.: Control of high-resolution electrohydrodynamic jet printing. Control Eng. Pract. 19, 1266–1273 (2011). doi:10.1016/j.conengprac.2011.05.009

    Article  Google Scholar 

  3. Taylor, G.: Disintegration of water drops in an electric field. Proc. R. Soc. A 280–383 (1964). doi:10.1098/rspa.1964.0151

  4. Park, J.U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., et al.: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789 (2007). doi:10.1038/nmat1974

    Article  Google Scholar 

  5. Zeleny, J.: Instability of electrified liquid surfaces. Am. Phys. Soc. 10, 124–142 (1917). doi:10.1103/PhysRev.10.1

  6. Chen, C.H., Saville, D.A., Aksay, I.A.: Electrohydrodynamic “drop-and-place” particle deployment. Appl. Phys. Lett. 88 (2006). doi:10.1063/1.2191733

  7. Wang, K., Stark, J.: Direct fabrication of electrically functional microstructures by fully voltage-controlled electrohydrodynamic jet printing of silver nano-ink. Appl. Phys. A 99, 763–766 (2010). doi:10.1007/s00339-010-5701-5

    Article  Google Scholar 

  8. Kim, J.H., Lee, D.Y., Hwang, J., Jung, H.I.: Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluid. Nanofluid. 7, 829–839 (2009). doi:10.1007/s10404-009-0441-6

    Article  Google Scholar 

  9. Youn, D., et al.: Electrohydrodynamic micropatterning of silver ink using near-field electrohydrodynamic jet printing with tilted-outlet nozzle. Appl. Phys. A 96, 933–938 (2009). doi:10.1007/s00339-009-5262-7

    Article  Google Scholar 

  10. Jayasinghe, S., Qureshi, Q., Eagles, P.: Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2, 216–219 (2006). doi:10.1002/smll.200500291

    Article  Google Scholar 

  11. Chen, C.H., Saville, D.A., Aksay, I.A.: Scaling laws for pulsed electrohydrodynamic drop formation. Appl. Phys. Lett. 89 (2006). doi:10.1063/1.2356891

  12. Choi, H.K., Park, J.U., Park, O., Ferreira, P.M., Georgiadis, J.G., Rogers, J.A.: Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl. Phys. Lett. 92 (2008). doi:10.1063/1.2903700

  13. Kim, Y.J., Kim, S.Y., Lee, J.S., Hwang, J., Kim, Y.J.: On-demand electrohydrodynamic jetting with meniscus control by a piezoelectric actuator for ultra-fine patterns. J. Micromech. Microeng. 19 (2009). doi:10.1088/0960-1317/19/10/107001

  14. Mishra, S., Barton, K.L., Alleyne, A.G., Ferreira, P.M., Rogers, J.A.: High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. J. Micromech. Microeng. 20 (2010). doi:10.1088/0960-1317/20/9/095026

  15. Barton, K., Mishra, S., Shorter, K.A., Alleyne, A., Ferreira, P., Rogers, J.: A desktop electrohydrodynamic jet printing system. Mechatronic 20, 611–616 (2010). doi:10.1016/j.mechatronics.2010.05.004

    Article  Google Scholar 

  16. Choi, H.K., Khan, A., Rahman, K., Kwan, K.R.: Effects of nozzles array configuration on cross-talk in multi-nozzle electrohydrodynamic inkjet printing head. J. Electrostat. 69, 380–387 (2011). doi:10.1016/j.elstat.2011.04.017

    Article  Google Scholar 

  17. Naveen Sait, A., Aravindan, S., Noorul Haq, A.: Optimisation of machining parameters of glass-fibre-reinforced plastic (GFRP) pipes by desirability function analysis using Taguchi technique. Int. J. Adv. Manuf. Technol. 43, 581–589 (2009). doi:10.1007/s00170-008-1731-y

  18. Harrington Jr., E.: The desirability function. Ind. Qual. Control 21, 494–498 (1965)

    Google Scholar 

  19. Puviyarasan, M., Senthil Kumar, V.S.: An experimental investigation for multi-response optimization of friction stir process parameters during fabrication of AA6061/B4Cp composites. Arab. J. Sci. Eng. 40(2015), 1733–1741 (2015). doi:10.1007/s13369-015-1654-5

    Article  Google Scholar 

  20. Derringer, G.: Simultaneous optimisation of several response variables. J. Qual. Technol. 12, 214–219 (1980)

    Google Scholar 

  21. Graf, P.G.: A 2nd generation electrohydrodynamic jet (e-jet) printing system, parametric studies of e-jet nozzles and integrated electrode e-jet deposition. M.S. thesis, University of Illinois at Urbana-Champaign, https://www.ideals.illinois.edu/handle/2142/24288 (2011)

  22. Sharma, V., Kumar, V.: Multi-objective optimization of laser curve cutting of aluminium metal matrix composites using desirability function approach. J. Braz. Soc. Mech. Sci. Eng. 38, 1221–1238 (2016). doi:10.1007/s40430-016-0487-9

    Article  Google Scholar 

  23. Jayaraman, P., Kumar, L.M.: Multi-response optimization in turning of AA6061 T6 using desirability function analysis. Appl. Mech. Mater. 812, 124–129 (2015)

    Article  Google Scholar 

  24. Kumar, V., Kumar, V., Jangra, K.K.: An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach. J. Ind. Eng. Int. 11, 297–307 (2015). doi:10.1007/s40092-015-0103-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge all the support from Department of Mechanical Engineering, NIT Durgapur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibendu Shekhar Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Das, R., Ball, A.K., Roy, S.S. (2018). Optimization of E-Jet Based Micro-manufacturing Process Using Desirability Function Analysis. In: Bhattacharyya, S., Sen, S., Dutta, M., Biswas, P., Chattopadhyay, H. (eds) Industry Interactive Innovations in Science, Engineering and Technology . Lecture Notes in Networks and Systems, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-3953-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3953-9_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3952-2

  • Online ISBN: 978-981-10-3953-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics