Effect of Incidence Angle on Optical Bandwidth in Ternary Photonic Crystal for Filter Application

  • Romi DeyEmail author
  • Meenakshi Banerjee
  • Antara Das
  • Arpan Deyasi
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 11)


Optical bandwidth of ternary photonic crystal based Butterworth filter is computed for polarized incidence of electromagnetic wave; and effect of incidence angle and structural parameters are studied within lower range on the filter performance. Result is compared with that obtained for normal incidence. Transfer matrix technique is adopted for calculation; and SiO2/air/TiO2 material system is considered for simulation purpose. Simulated findings in favor of p-polarized wave incidence for varying incidence angle owing to higher bandwidth and less ripple in passband for filter application.


Ternary photonic crystal Optical bandwidth Angle of incidence Butterworth filter Structural parameters 


  1. 1.
    Loudon, R.: The propagation of electromagnetic energy through an absorbing dielectric. J. Phys. A 3, 233–245 (1970)CrossRefGoogle Scholar
  2. 2.
    Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2061 (1987)CrossRefGoogle Scholar
  3. 3.
    Andreani, L.C., Agio, M., Bajoni, D., Belotti, M., Galli, M., Guizzetti, G., Malvezzi, A.M., Marabelli, F., Patrini, M., Vecchi, G.: Optical properties and photonic mode dispersion in two-dimensional and waveguide-embedded photonic crystals. Synth. Metals 139, 695–700 (2003)CrossRefGoogle Scholar
  4. 4.
    Villa-Villa, F., Gaspar-Armenta, J.A., Mendoza-Su´arez, A.: Surface modes in one dimensional photonic crystals that include left handed materials. J. Electromag. Waves Appl. 21, 485–499 (2007)CrossRefGoogle Scholar
  5. 5.
    Edalati, A., Boutayeb, H., Denidni, T.A.: Band structure analysis of reconfigurable metallic crystals: effect of active elements. J. Electromag. Waves Appl. 21, 2421–2430 (2007)CrossRefGoogle Scholar
  6. 6.
    Chen, J.C., Haus, H.A., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: Optical filters from photonic band gap air bridges. J. Lightwave Technol. 14, 2575–2580 (1996)CrossRefGoogle Scholar
  7. 7.
    Golmohammadi, S., Moravvej-Farshi, M.K., Rostami, A., Zarifkar, A.: Spectral analysis of the Fibonacci-class one-dimensional quasi-periodic structures. Progr. Electromag. Res. 75, 69–84 (2007)CrossRefGoogle Scholar
  8. 8.
    Mao, D., Ouyang, Z., Wang, J.C.: A photonic-crystal polarizer integrated with the functions of narrow bandpass and narrow transmission angle filtering. Appl. Phys. B 90, 127–131 (2008)CrossRefGoogle Scholar
  9. 9.
    Rojas, J.A.M., Alpuente, J., L´opez-Esp´i, P., Garc´ia, P.: Accurate model of electromagnetic wave propagation in unidimensional photonic crystals with defects. J. Electromag. Waves Appl. 21, 1037–1051 (2007)Google Scholar
  10. 10.
    Mukherjee, S., Roy, A., Deyasi, A., Ghosal, S.: Dependence of photonic bandgap on material composition for two-dimensional photonic crystal with triangular geometry. Found. Front. Comput. Commun. Electr. Eng. (CRC Press), chapter 52, 259–263 (2016)Google Scholar
  11. 11.
    Limpert, J., Liem, A., Reich, M., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., Broeng, J., Petersson, A., Jakobsen, C.: Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 12, 1313–1319 (2004)CrossRefGoogle Scholar
  12. 12.
    Hansryd, J., Andrekson, P.A., Westlund, M., Li, J., Hedekvist, P.O.: Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Topics Quantum Electr. 8, 506–520 (2002)CrossRefGoogle Scholar
  13. 13.
    D’Orazio, A., De Palo, V., De Sario, M., Petruzzelli, V., Prudenzano, F.: Finite difference time domain modeling of light amplification in active photonic bandgap structures. Progr. Electromag. Res. 39, 299–339 (2003)CrossRefGoogle Scholar
  14. 14.
    Kalchmair, S., Detz, H., Cole, G.D., Andrews, A.M., Klang, P., Nobile, M., Gansch, R., Ostermaier, C., Schrenk, W., Strasser, G.: Photonic crystal slab quantum well infrared photodetector. Appl. Phys. Lett. 98, 011105 (2011)CrossRefGoogle Scholar
  15. 15.
    Belhadj, W., AbdelMalek, F., Bouchriha, H.: Characterization and study of photonic crystal fibres with bends. Mater. Sci. Eng.: C 26, 578–579 (2006)CrossRefGoogle Scholar
  16. 16.
    Azuma, H.: Quantum computation with kerr-nonlinear photonic crystals. J. Phys. D: Appl. Phys. 41, 025102 (2008)CrossRefGoogle Scholar
  17. 17.
    Bayat, G., Rafi, G.Z., Shaker, G.S.A., Ranjkesh, N., Chaudhuri, S.K., Safavi-Naeini, S.: Photonic-crystal based polarization converter for terahertz integrated circuit. IEEE Trans. Microwave Theory Tech. 58, 1976–1984 (2010)CrossRefGoogle Scholar
  18. 18.
    Gao, Y., Chen, H., Qiu, H., Lu, Q., Huang, C.: Transmission spectra characteristics of 1D photonic crystals with complex dielectric constant. Rare Metals 30, 150–154 (2011)CrossRefGoogle Scholar
  19. 19.
    Reininger, P., Kalchmair, S., Gansch, R., Andrews, A.M., Detz, H., Zederbauer, T., Ahn, S.I., Schrenk, W., Strasser, G.: Optimized photonic crystal design for quantum well infrared photodetectors. Proc. SPIE 8425, 84250A (2012)CrossRefGoogle Scholar
  20. 20.
    Banerjee, A.: Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals. Progr. Electromagn. Res. 89, 11–22 (2009)CrossRefGoogle Scholar
  21. 21.
    Aly, A.H., Ismaeel, M., Abdel-Rahman, E.: Comparative study of the one dimensional dielectric and metallic photonic crystals. Opt. Photonics J. 2, 105–112 (2012)CrossRefGoogle Scholar
  22. 22.
    Zare, Z., Gharaati, A.: Investigation of band gap width in ternary 1d photonic crystal with left-handed layer. ACTA Physica Polonica A 125, 36–38 (2014)CrossRefGoogle Scholar
  23. 23.
    Gharaati, A., Mohamadebrahimi, L., Roozitalab, Z.: Photonic band gap in negative ternary refractive indices of two-dimensional photonic crystal. Optica Applicata XLIV, 637–648 (2014)Google Scholar
  24. 24.
    Sharma, S., Kumar, R., Singh, K.S., Jain, D.: Design of an omnidirectional reflector using one dimensional ternary photonic crystal. Int. J. Eng. Tech. Res. 90–93 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Romi Dey
    • 1
    Email author
  • Meenakshi Banerjee
    • 1
  • Antara Das
    • 1
  • Arpan Deyasi
    • 1
  1. 1.Department of Electronics and Communication EngineeringRCC Institute of Information TechnologyKolkataIndia

Personalised recommendations