Advertisement

Electromagnetic Band Structure Computation of Metamaterial/Air Composition from First Principle for Optical Filter Application

  • Bhaswati DasEmail author
  • Arpan Deyasi
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 11)

Abstract

In this paper, transfer matrix technique is used to compute the First Brillouin zone of DNG/air material composition for the application in photonic crystal. Three different types of physically realizable metamaterials are considered as the constituent of the periodic arrangement. Tuning of the Brillouin zone is made by suitable changing the structural parameters and coupling coefficient between forward and backward propagating waves for all three structures (paired nanorod, nano-fishnet with rectangular void, nano-fishnet with elliptical void). Results obtained from the first principle show the possibility of transition between perfect and quasi electromagnetic bandgap which is important for the possible application as photonic filter. Result is compared with the obtained band structure of conventional SiO2/air composition.

Keywords

Electromagnetic band structure Brillouin zone Dispersion relation Metamaterial Coupling condition Structural parameters 

References

  1. 1.
    Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2061 (1987)Google Scholar
  2. 2.
    Loudon, R.: The propagation of electromagnetic energy through an absorbing dielectric. J. Phys. A 3, 233–245 (1970)Google Scholar
  3. 3.
    D’Orazio, A., De Palo, V., De Sario, M., Petruzzelli, V., Pru-denzano, F.: Finite difference time domain modeling of light amplification in active photonic bandgap structures. Prog. Electromagn. Res. 39, 299–339 (2003)Google Scholar
  4. 4.
    Mao, D., Ouyang, Z., Wang, J.C.: A photonic-crystal polarizer integrated with the functions of narrow bandpass and narrow transmission-angle filtering. Appl. Phys. B 90, 127–131 (2008)Google Scholar
  5. 5.
    Ozbay, E., Guven, K., Aydin, K: Physics and applications of photonic nanocrystals. Int. J. Nanotechnol. 1, 379–398 (2004)Google Scholar
  6. 6.
    Russell, P.S.J.: Photonic-crystal fibers. J. Lightwave Technol. 24, 4729– 4749 (2006)Google Scholar
  7. 7.
    Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tunnermann, T., Iliew, R., Lederer, F., Broeng, J., Vienne, G., Petersson, A., Jakobsen, C.: High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Express 11, 818–823 (2003)Google Scholar
  8. 8.
    Hansryd, J., Andrekson, P.A., Westlund, M., Li, J., Hedekvist, P.O.: Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002)CrossRefGoogle Scholar
  9. 9.
    Szczepanski, P.: Semiclassical theory of multimode operation of a distributed feedback laser. IEEE J. Quantum Electron. 24, 1248–1257 (1988)Google Scholar
  10. 10.
    Kalchmair, S., Detz, H., Cole, G.D., Andrews, A.M., Klang, P., Nobile, M., Gansch, R., Ostermair, C., Schrenk, W., Strasser, G.: Photonic crystal slab quantum well infrared photodetector. Appl. Phys. Lett. 98, 011105 (2011)Google Scholar
  11. 11.
    Chen, J.C., Haus, H.A., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: Optical filters from photonic band gap air bridges. J. Lightwave Technol. 14, 2575–2580 (1996)Google Scholar
  12. 12.
    Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)CrossRefGoogle Scholar
  13. 13.
    Azuma, H.: Quantum computation with Kerr-nonlinear photonic crystals, J. Phys. D: Appl. Phys. 41, 025102 (2008)Google Scholar
  14. 14.
    Bayat, K., Rafi, G.Z., Shaker, G.S.A., Ranjkesh, N., Chaud-huri, S.K., Safavi-Naeini, S.: Photonic-crystal based polarization converter for terahertz integrated circuit. IEEE Trans. Microw. Theory Tech. 58, 1976–1984 (2010)Google Scholar
  15. 15.
    Hillebrand, R., Hergert, W., Harm, W.: Theoretical band gap studies of two-dimensional photonic crystals with varying column roundness. Physica Status Solidi (B) 217, 981–989 (2000)Google Scholar
  16. 16.
    Popescu, D.G., Sterian, P.: FDTD analysis of photonic crystals with square and hexagonal symmetry. J. Adv. Res. Phys. 2, 021105 (2011)Google Scholar
  17. 17.
    Zhao, J., Li, X., Zhong, L., Chen, G.: Calculation of photonic bandgap of one dimensional photonic crystal. J. Phys.: Conf. Ser. (Dielectrics 2009: Measurement Analysis and Applications, 40th Anniversary Meeting), 183, 012018 (2009)Google Scholar
  18. 18.
    Preblea, S., Lipson, M.: Two-dimensional photonic crystals designed by evolutionary algorithms. Appl. Phys. Lett. 86, 061111 (2005)Google Scholar
  19. 19.
    Kao, C.Y., Osher, S., Yablonovitch, E.: Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl. Phys. B.  81, 235–244 (2005)Google Scholar
  20. 20.
    Yin, Y., Huang, J.: High-speed visible light communication using light-emitting diodes embedded with photonic crystals. Progress in electromagnetic research symposium (2016)Google Scholar
  21. 21.
    D’souza, N.M., Mathew, V.: Tunable filter using ferroelectric-dielectric periodic multilayer. Appl. Opt. 54, 2187–2192 (2015)Google Scholar
  22. 22.
    Weily, A.R., Esselle, K.P., Bird, T.S., Sanders, B.C.: Linear array of woodpile EBG sectoral horn antennas. IEEE Trans. Antennas. Propag. 54, 2263–2274 (2006)Google Scholar
  23. 23.
    Foteinopoulou, S.: Photonic crystals as metamaterials. Phys. B.: Condens. Matter. 407, 4056–4061 (2012)Google Scholar
  24. 24.
    Wang, Z.X., You, L.Z.: Design and analysis of double negative binary diffractive lens.  International conference on microwave and millimeter wave technology (2010)Google Scholar
  25. 25.
    Shyroki, D.M., Lavrinenko, A.V.: Dielectric multilayer waveguides for TE and TM mode matching. J. Opt. A.: Pure Appl. Opt.  5, 192–198 (2003)Google Scholar
  26. 26.
    Cao, T., Cryan, M.J.: Modeling of optical trapping using double negative index fishnet metamaterials. Prog. Electromagnet. Res. 129, 33–49 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringRCC Institute of Information TechnologyKolkataIndia

Personalised recommendations