Advertisement

Comparative Evaluation of Capacity Analysis and Probability Distribution of Elements for Different Iterative Values of MIMO

  • Sutanu GhoshEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 11)

Abstract

In present scenario, MIMO is an attractive technology to enhance the system capacity using its antenna configuration. This capacity analysis is possible through the probability distribution of elements used in MIMO. In this work, a comparative analysis of probability distribution of elements has been done in a scattered environment of MIMO system. Different iterative values have been considered to perform this comparison. This time-based iterative value is useful to achieve the probability distribution with respect to different elements. Altogether, capacity comparison is also done through different antenna patterns. From the graphical output it is shown that, better level of distribution occurs at higher levels of iterative value.

Keywords

MIMO correlation SVD Kronecker model Weichselberger model VCR model 

References

  1. 1.
    Rusek, F., Persson, D., Lau, B.K., Larsson, E.G., Marzetta, T.L., Edfors, O., Tufvesson, F.: Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)CrossRefGoogle Scholar
  2. 2.
    Telatar, E.: Capacity of multi-antenna gaussian channels. Eur. Trans. Telecommun. 10(6), 585–595 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Foschini, G.J., Gans, M.J.: On limits of wireless communications in a fading environment when using multiple antennas. Wireless Pers. Commun. 6(3), 311–335 (1998)CrossRefGoogle Scholar
  4. 4.
    Moustakas, A.L., Simon, S.H., Sengupta, A.M.: MIMO capacity through correlated channels in the presence of correlated interferers and noise: a (not so) large N analysis. IEEE Trans. Inf. Theory 49(10), 2545–2561 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Jiang, Y., Li, J., Hager, W.W.: Uniform channel decomposition for MIMO communications. IEEE Trans. Signal Process. 53(11), 4283–4294 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998)CrossRefGoogle Scholar
  7. 7.
    Tarokh, V., Seshadri, N., Calderbank, A.R.: Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inf. Theory 44(2), 744–765 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space-time block codes from orthogonal designs. IEEE Trans. Inf. Theory 45(5), 1456–1467 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Foschini, G.J., Chizhik, D., Gans, M.J., Papadias, C., Valenzuela, R.A.: Analysis and performance of some basic space-time architectures. IEEE J. Sel. Areas Commun. 21(3), 303–320 (2003)CrossRefGoogle Scholar
  10. 10.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins UP (1996)Google Scholar
  11. 11.
    3GPP Correlation properties of SCM: SCM-127, SCM Conference Call (2003)Google Scholar
  12. 12.
    Ghosh, S.: Performance evaluation with a comparative analysis of mimo channel on the basis of doppler shift and other probabilistic parameters in fading environment. IJMNCT (2014)Google Scholar
  13. 13.
    Shiu, D.S., Foschini, G.J., Gans, M.J., Kahn, J.M.: Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Trans. Commun. 48(3), 502–513 (2000)Google Scholar
  14. 14.
    Werner, K., Jansson, M., Stoica, P.: On estimation of covariance matrices with Kronecker product structure. IEEE Trans. Signal Process. 56(2), 478–491 (2008)Google Scholar
  15. 15.
    Weichselberger, W., Herdin, M., Ozcelik, H., Bonek, E.: A stochastic MIMO channel model with joint correlation of both link ends. IEEE Trans. Wireless Commun. 5(1), 90–100 (2006)Google Scholar
  16. 16.
    Kermoal, J.P., Schumacher, L., Pedersen, K.I., Mogensen, P.E., Frederiksen, F.: A stochastic MIMO radio channel model with experimental validation. IEEE J. Sel. Areas Commun. 20(6), 1211–1226 (2002)Google Scholar
  17. 17.
    Özcelik, H., Herdin, M., Weichselberger, W., Wallace, J., Bonek, E.: Deficiencies of ‘Kronecker’ MIMO radio channel model (2003)Google Scholar
  18. 18.
    Weichselberger, W.: Spatial structure of multiple antenna radio channels. Institut für Nachrichtentechnik und Hochfrequenztechnik. (2003) DecGoogle Scholar
  19. 19.
    Sayeed, A.M.: Deconstructing multiantenna fading channels. IEEE Trans. Signal Process. 50(10), 2563–2579 (2002)Google Scholar
  20. 20.
    Qualnet Simulator: Scalable Network Technologies (2012), http://www.qualnet.com

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Indian Institute of Engineering Science and TechnologyShibpur, HowrahIndia

Personalised recommendations