Advertisement

Photorefractive Optical Cryptography: A Personal Tour

  • Kehar SinghEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 194)

Abstract

Photorefractive crystals (PRCs) are used in a variety of applications including optical information processing where one such application has been in the area of image encryption. Due to their ability to record phase gratings, and to produce phase conjugate wave by non-linear wave-mixing, the PRCs have enriched the optical cryptographic techniques also. In this brief review, an attempt has been made to present glimpses of some of the techniques, with a focus on the research work carried out by the author’s photonics group at IIT Delhi.

References

  1. 1.
    Yeh, P., [Introduction to Photorefractive Nonlinear Optics] Wiley, N.Y. (1993).Google Scholar
  2. 2.
    Solymar, L., Webb D. J., and Grunnet-Jepsen A, [The Physics and Applications of Photorefractive Materials] Oxford Press UK (1996).Google Scholar
  3. 3.
    Yu, F.T.S. and Yin, S., (Eds). [Photorefractive Optics; Materials, Properties, and Applications] Academic Press, N.Y. (2000).Google Scholar
  4. 4.
    Günter, P. and Huignard, J-P. (Eds.), [Photorefractive Materials and Their Applications-1 Basic Effects] Springer-Verlag, Berlin (2006).Google Scholar
  5. 5.
    Günter, P. and Huignard, J-P. (Eds.), [Photorefractive Materials and Their Applications-2 Materials] Springer-Verlag, Berlin (2007).Google Scholar
  6. 6.
    Günter, P. and Huignard, J-P. (Eds.), [Photorefractive Materials and Their Applications-3 Applications] Springer-Verlag, Berlin (2007).Google Scholar
  7. 7.
    Singh, K., Unnikrishnan, G., and Nishchal, N.K., “Photorefractive optical processing for optical security”, Proc. SPIE 4803, 205–219 (2002).Google Scholar
  8. 8.
    Javidi, B., Ed., [Optical and Digital Techniques for Information Security] Springer: N.Y. (2005).Google Scholar
  9. 9.
    Alfalou, A., and Brosseau,C., “Optical image compression and encryption methods”. Adv. Opt. Photon. 1589–636 (2009).Google Scholar
  10. 10.
    Matoba, O., Nomura,T., Perez-Cabre, E., Millan, M.S., and Javidi, B., “Optical techniques for information security”, Proc. IEEE. 97, 1128–1148 (2009).Google Scholar
  11. 11.
    Kumar, A., Singh, M., and Singh, K., “Speckle coding for optical and digital data security applications”, in: [Advances in Speckle Metrology and Related Techniques], (Ed.) Kaufmann, G.H., Wiley-VCH: Weinheim, Chap. 6. pp. 239–299 (2001).Google Scholar
  12. 12.
    Kumar, P., Joseph, J., and Singh, K. “Double Random Phase Encoding Based Optical Systems Using Some Linear Canonical Transforms: Weaknesses and Countermeasures”, in [Linear Canonical Transforms; Theory and Applications], Springer-Verlag, Healy, J.J. et al (Eds.) pp 367–396 (2016).Google Scholar
  13. 13.
    Refregier, P., and Javidi, B., “Optical image encryption based on input plane and Fourier plane random encoding” Opt. Lett. 20, 767–769.Google Scholar
  14. 14.
    Unnikrishnan, G., Joseph, J., and Singh, K. “Optical encryption system that uses phase conjugation in a photorefractive crystal”, Appl. Opt. 37,8181–8186 (1998).Google Scholar
  15. 15.
    Unnikrishnan, G., Joseph, J., and Singh, K., “Optical encryption by double random phase encoding in the fractional Fourier domain”, Opt. Lett. 25,887–889 (2000).Google Scholar
  16. 16.
    Towghi, N., Javidi, B., and Luo, Z., “Fully phase encrypted image processor” J. Opt. Soc. Am. A 36 (1999) 1915–1927.Google Scholar
  17. 17.
    Nishchal, N.K., Joseph, J., and Singh, K., “Fully phase encryption using fractional Fourier transform” Opt. Eng. 42 (2003) 1583–1588.Google Scholar
  18. 18.
    Nishchal, N.K., Joseph, J., and Singh, K., “Optical encryption using cascaded extended fractional Fourier transform” Opt. Mem. Neural Network 12, 39–145 (2003).Google Scholar
  19. 19.
    Nishchal, N.K., Joseph, and Singh, K., “Fully phase encrypted memory using cascaded extended fractional Fourier transform” Opt. Laser Eng. 42, 141–151 (2004).Google Scholar
  20. 20.
    Singh, M., Kumar, A., and Singh, K., “Secure optical system that uses fully phase-based encryption and lithium niobate crystal as phase contrast filter for decryption, Opt. Laser Technol. 40, 619–624 (2008).Google Scholar
  21. 21.
    John, R., Joseph, J., and Singh, K., “Phase-image-based content-addressable holographic data storage with security” J. Opt. A: Pure Appl. Opt. 7, 123–128 (2005).Google Scholar
  22. 22.
    Kumar, P., Kumar, A., Joseph, J., and Singh, K., “Impulse attack- free double-random phase encryption scheme with randomized lens-phase functions”, Opt. Lett. 34, 331–333 (2009).Google Scholar
  23. 23.
    Kumar, P., Joseph, J., and Singh, K., “Impulse attack-free four random phase mask encryption based on a 4-f optical system”, Appl. Opt. 48, 2356–2363 (2009).Google Scholar
  24. 24.
    Kumar, P., Joseph, J., and Singh, K., “Known-plaintext attack-free double random phase-amplitude optical encryption: vulnerability to impulse function attack” J. Opt. (IOP) 14,045401- 1/8 (2012).Google Scholar
  25. 25.
    Kumar, P., Joseph, J., and Singh, K., “Holographic encryption system in the Fresnel domain with convergent random illumination”, Opt. Eng. 49,095803-1/6 (2010).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The NorthCap UniversityGurgaonIndia

Personalised recommendations