Skip to main content

Secure Data Dissemination for Intelligent Transportation Systems

  • Chapter
  • First Online:
Secure and Trustworthy Transportation Cyber-Physical Systems

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

Intelligent transportation systems (ITS) integrate communications and information technology into the transportation systems to provide a safer and more efficient driving experience. Transmission security is of vital importance for the deployment of ITS systems in practice. In this chapter, secure data dissemination techniques are studied for relay-assisted vehicular communications towards ITS applications. We first briefly review the state of the art of vehicular networking research. Afterwards, we investigate the secure data dissemination issues for both vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) scenarios exploiting the physical-layer security approach. For the V2I scenario, a distributed source-relay selection scheme with anti-eavesdropping capabilities is proposed, for which a source-relay pair is jointly selected to maximize the achievable secrecy rate. For the V2V scenario, a fountain-coding aided relaying scheme is developed. By using this scheme, transmission security is guaranteed as long as the legitimate receiver can accumulate the required number of fountain-coded packets before the eavesdropper does. To satisfy this condition, a constellation-rotation aided cooperative jamming method is utilized to deteriorate the received signal quality at the eavesdropper. To evaluate the performance of the proposed strategy, a novel metric called QoS violating probability (QVP) is further proposed and analyzed. Finally, in the concluding remarks, we summarize the main contributions of our work, and point out some topics that are worthy of investigation in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the multisource multirelay network without eavesdroppers, the best source-relay pair is selected according to the method in [13].

  2. 2.

    We emphasize that in this section, “source packets,” “fountain packets,” and “transmitted packets” have different meanings.

  3. 3.

    In this section, the outage probability is defined as the probability that the channel capacity falls below a specified target transmission rate. This definition is the same as the one used in the information-theoretic literature.

  4. 4.

    In practice, the value of the rotation angle affects system performance such as the bit error rate. However, this work is dedicated to information-theoretic analysis. Therefore, any angle value satisfying Eq. (29) can be used and the specific choice for this parameter has no influence on the results.

  5. 5.

    It is assumed that the power of the information-bearing signal as well as the jamming signal is normalized such that \(\mathrm{E}[|t_{\mathrm {S}}|^{2}] = 1\) and \(\mathrm{E}[|w_{\mathrm {J}}^{(1)}|^{2}] = 1\). This assumption also holds for the transmitted signals during the second phase.

  6. 6.

    According to the assumptions about the available CSI at each node, \(h_{\mathrm {JR}}\) and \(h_{\mathrm {JD}}\) are unknown at E, and the impact of the jamming signals cannot be removed by the eavesdropper.

  7. 7.

    This metric can be viewed as a modification of the average end-to-end throughput defined in [61] which is suitable for evaluating the transmission efficiency of the fountain-coding based strategy. Here the original definition is modified to make it applicable to the eavesdropping environments.

References

  1. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., & Weil, T. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys and Tutorials, 13(4), 584–616, 4th Quarter.

    Google Scholar 

  2. Mecklenbrauker, C. F., Molisch, A. F., Karedal, J., Tufvesson, F., Paier, A., Bemado, L., et al. (2011). Vehicular channel characterization and its implications for wireless system design and performance. Proceedings of the IEEE, 99(7), 1189–1212.

    Article  Google Scholar 

  3. Zhang, J., Zhang, Q., & Jia, W. (2009). VC-MAC: A cooperative MAC protocol in vehicular networks. IEEE Transactions on Vehicular Technology, 58(3), 1561–1571.

    Article  Google Scholar 

  4. Zhou, T., Sharif, H., Hempel, M., Mahasukhon, P., Wang, W., & Ma, T. (2011). A novel adaptive distributed cooperative relaying MAC protocol for vehicular networks. IEEE Journal on Selected Areas in Communications, 29(1), 72–82.

    Article  Google Scholar 

  5. Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). Vanet routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(6), 3609–3626.

    Article  Google Scholar 

  6. Harigovindan, V. P., Babu, A. V., & Jacob, L. (2012). Ensuring fair access in IEEE 802.11p-based vehicle-to-infrastructure networks. EURASIP Journal on Wireless Communications and Networking. doi:10.1186/1687-1499-2012-16.

  7. Eiza, M. H., & Ni, Q. (2013). An evolving graph-based reliable routing scheme for VANETs. IEEE Transactions on Vehicular Technology, 62(4), 1493–1504.

    Article  Google Scholar 

  8. Lin, J. C., Lin, C. S., Liang, C. N., & Chen, B. C. (2012). Wireless communication performance based on IEEE 802.11p R2V field trails. IEEE Communications Magazine, 50(5), 184–191.

    Article  Google Scholar 

  9. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity-Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  10. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, W., & Letaief, K. B. (2008). Full-rate distributed space-time codes for cooperative communications. IEEE Transactions on Wireless Communications, 7(7), 2446–2451.

    Article  Google Scholar 

  12. Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460.

    Article  Google Scholar 

  13. Sun, L., Zhang, T., Lu, L., & Niu, H. (2010). On the combination of cooperative diversity and multiuser diversity in multi-source multi-relay wireless networks. IEEE Signal Processing Letters, 17(6), 535–538.

    Article  Google Scholar 

  14. Janani, M., Hedayat, A., Hunter, T. E., & Nosratinia, A. (2004). Coded cooperation in wireless communications: Space-time transmission and iterative decoding. IEEE Transactions on Signal Processing, 52(2), 362–371.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zeng, M., Zhang, R., & Cui, S. (2011). On the design of distributed beamforming for two-way relay networks. IEEE Transactions on Signal Processing, 59(5), 2284–2295.

    Article  MathSciNet  Google Scholar 

  16. Ding, Z., & Leung, K. K. (2011). Cross-layer routing using cooperative transmission in vehicular ad-hoc networks. IEEE Journal on Selected Areas in Communications, 29(3), 571–581.

    Article  Google Scholar 

  17. Ng, S. C., Zhang, W., Zhang, Y., Yang, Y., & Mao, G. (2011). Analysis of access and connectivity probabilities in vehicular relay networks. IEEE Journal on Selected Areas in Communications, 29(1), 140–150.

    Article  Google Scholar 

  18. Li, M., Yang, Z., & Lou, W. (2011). CodeOn: cooperative popular content distribution for vehicular networks using symbol level network coding. IEEE Journal on Selected Areas in Communications, 29(1), 1–14.

    Article  Google Scholar 

  19. Mukherjee, A., Fakoorian, S. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1550–1573, Third quarter.

    Google Scholar 

  20. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  MATH  Google Scholar 

  21. Csiszár, I., & Körner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.

    Article  MathSciNet  MATH  Google Scholar 

  22. Tekin, E., & Yener, A. (2008). The general Gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming. IEEE Transactions on Information Theory, 54(6), 2735–2751.

    Article  MathSciNet  MATH  Google Scholar 

  23. Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.

    Article  MathSciNet  MATH  Google Scholar 

  24. Goel, S., & Negi, R. (2008). Guaranteeing secrecy using artificial noise. IEEE Transactions on Wireless Communications, 7(6), 2180–2189.

    Article  Google Scholar 

  25. Vilela, J. P., Pinto, P. C., & Barros, J. (2011). Position-based jamming for enhanced wireless secrecy. IEEE Transactions on Information Forensics and Security, 6(3), 616–627.

    Article  Google Scholar 

  26. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.

    Article  MathSciNet  Google Scholar 

  27. Zheng, G., Choo, L.-C., & Wong, K.-K. (2011). Optimal cooperative jamming to enhance physical layer security using relays. IEEE Transactions on Signal Processing, 59(3), 1317–1322.

    Article  MathSciNet  Google Scholar 

  28. Sun, L., Zhang, T., Li, Y., & Niu, H. (2012). Performance study of two-hop amplify-and-forward systems with untrustworthy relay nodes. IEEE Transactions on Vehicular Technology, 61(8), 3801–3807.

    Article  Google Scholar 

  29. Krikidis, I. (2010). Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications, 4(15), 1787–1791.

    Article  Google Scholar 

  30. Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.

    Article  Google Scholar 

  31. Liu, Y., Li, J., & Petropulu, A. P. (2013). Destination assisted cooperative jamming for wireless physical-layer security. IEEE Transactions on Information Forensics and Security, 8(4), 682–694.

    Article  Google Scholar 

  32. Zhao, H., Lu, L., Song, C., Wu, Y. (2012). IPARK: Location-aware-based intelligent parking guidance over infrastructures VANETs. International Journal of Distributed Sensor Networks, Article ID: 280515. doi:10.1155/2012/280515.

  33. Hartenstein, H., & Laberteaux, K. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine, 46(6), 164–171.

    Article  Google Scholar 

  34. Seddik, K. G., Ibrahim, A. S., & Liu, K. J. R. (2008). Trans-modulation in wireless relay networks. IEEE Communications Letters, 12(3), 170–172.

    Article  Google Scholar 

  35. Wang, T., Giannakis, G. B., & Wang, R. (2008). Smart regenerative relays for link-adaptive cooperative communications. IEEE Transactions on Communications, 56(11), 1950–1960.

    Article  Google Scholar 

  36. Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  37. Ding, Z., Leung, K. K., Goeckel, D. L., & Towsley, D. (2009). On the study of network coding with diversity. IEEE Transactions on Wireless Communications, 8(3), 1247–1259.

    Article  Google Scholar 

  38. Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). A new efficient low-complexity scheme for multi-source multi-relay cooperative networks. IEEE Transactions on Vehicular Technology, 60(2), 716–722.

    Article  Google Scholar 

  39. Seyfi, M., Muhaidat, S., Liang, J., & Uysal, M. (2011). Relay selection in dual-hop vehicular networks. IEEE Signal Processing Letters, 18(2), 134–137.

    Article  Google Scholar 

  40. Ge, Y., Wen, S., Ang, Y.-H., & Liang, Y.-C. (2010). Optimal relay selection in IEEE 802.16j multihop relay vehicular networks. IEEE Transactions on Vehicular Technology, 59(5), 2198–2206.

    Article  Google Scholar 

  41. Niu, H., Zhu, N., Sun, L., Vasilakos, A. V., & Sezaki, K. (2015). Security-embedded opportunistic user cooperation with full diversity. Wireless Networks. doi:10.1007/s11276-015-1044-7.

  42. Park, K.-H., Wang, T., & Alouini, M. (2013). On the jamming power allocation for secure amplify-and-forward relaying via cooperative jamming. IEEE Journal on Selected Areas in Communications, 9(31), 1741–1750.

    Article  Google Scholar 

  43. Fan, L., Lei, X., Duong, T. Q., Elkashlan, M., & Karagiannidis, G. K. (2014). Secure multiuser commucations in multiple amplify-and-forward relay networks. IEEE Transactions on Communications, 62(9), 3299–3310.

    Article  Google Scholar 

  44. Hoang, T. M., Duong, T. Q., Suraweera, H. A., Tellambura, C., & Poor, H. V. (2015). Cooperative beamforming and user selection for improving the security of relay-aided systems. IEEE Transactions on Communications, 63(12), 5039–5051.

    Article  Google Scholar 

  45. Bao, V., L-Trung, N., & Debbah, M. (2013). Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Transactions on Wireless Communications, 12(12), 6076–6085.

    Google Scholar 

  46. Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31(10), 2099–2111.

    Article  Google Scholar 

  47. Ikki, S., & Ahmed, M. H. (2007). Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel. IEEE Communications Letters, 11(4), 334–336.

    Article  Google Scholar 

  48. Xu, F., Lau, F. C. M., Zhou, Q. F., & Yue, D. W. (2009). Outage performance of cooperative communication systems using opportunistic relaying and selection combining receiver. IEEE Signal Processing Letters, 16(4), 237–240.

    Google Scholar 

  49. Pappi, K. N., Diamantoulakis, P. D., Otrok, H., & Karagiannidis, G. K. (2015). Cloud compute-and-forward with relay cooperation. IEEE Transactions on Wireless Communications, 14(6), 3415–3428.

    Article  Google Scholar 

  50. Sun, L., Zhang, T., & Niu, H. (2011). Inter-relay interference in two-path digital relaying systems: Detrimental or beneficial? IEEE Transactions on Wireless Communications, 10(8), 2468–2473.

    Article  Google Scholar 

  51. Zhang, X., McKay, M. R., Zhou, X., & Heath, R. W. (2015). Artificial-noise-aided secure multi-antenna transmission with limited feedback. IEEE Transactions on Wireless Communications, 14(5), 2742–2754.

    Article  Google Scholar 

  52. Jayasinghe, K., Jayasinghe, P., Rajatheva, N., & Latva-aho, M. (2014). Secure beamforming design for physical layer network coding based MIMO two-way relaying. IEEE Communications Letters, 18(7), 1270–1273.

    Article  Google Scholar 

  53. Luo, S., Li, J., & Petropulu, A. P. (2013). Uncoordinated cooperative jamming for secret communications. IEEE Transactions on Information Forensics and Security, 8(7), 1081–1090.

    Article  Google Scholar 

  54. Wang, X., Tao, M., Mo, J., & Xu, Y. (2011). Power and subcarrier allocation for physical-layer security in OFDMA-based broadband wireless networks. IEEE Transactions on Information Forensics and Security, 6(3), 693–702.

    Article  Google Scholar 

  55. Mo, J., Tao, M., Liu, Y., & Wang, R. (2014). Secure beamforming for MIMO two-way communications with an untrusted relay. IEEE Transactions on Signal Processing, 62(9), 2185–2199.

    Article  MathSciNet  Google Scholar 

  56. Zou, Y., Wang, X., Shen, W., & Hanzo, L. (2014). Security versus reliability analysis of opportunistic relaying. IEEE Transactions on Vehicular Technology, 63(6), 2653–2661.

    Article  Google Scholar 

  57. Sun, L., Ren, P., Du, Q., Wang, Y., & Gao, Z. (2015). Security-aware relaying scheme for cooperative networks with untrusted relay nodes. IEEE Communications Letters, 19(3), 463–466.

    Article  Google Scholar 

  58. Sun, L., Du, Q., Ren, P., & Wang, Y. (2016). Two birds with one stone: Towards secure and interference-free D2D transmissions via constellation rotation. IEEE Transactions on Vehicular Technology, 65(10), 8767–8774.

    Article  Google Scholar 

  59. MacKay, D. J. C. (2005). Fountain codes. IEE Proceedings of the Communications, 152(6), 1062–1068.

    Article  Google Scholar 

  60. Zhang, X., & Du, Q. (2006). Adaptive low-complexity erasure-correcting code-based protocols for QoS-driven mobile multicast services over wireless networks. IEEE Transactions on Vehicular Technology, 55(5), 1633–1647.

    Article  Google Scholar 

  61. Wang, X., Chen, W., & Cao, Z. (2011). SPARC: Superposition-aided rateless coding in wireless relay systems. IEEE Transactions on Vehicular Technology, 60(9), 4427–4438.

    Article  Google Scholar 

  62. Niu, H., Iwai, M., Sezaki, K., Sun, L., & Du, Q. (2014). Exploiting fountain codes for secure wireless delivery. IEEE Communications Letters, 18(5), 777–780.

    Article  Google Scholar 

  63. Boutros, J., & Viterbo, E. (1998). Signal space diversity: A power- and bandwidth-efficient diversity technique for the Rayleigh fading channel. IEEE Transactions on Information Theory, 44(4), 1453–1467.

    Article  MathSciNet  MATH  Google Scholar 

  64. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Sun or Qinghe Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Sun, L., Du, Q. (2017). Secure Data Dissemination for Intelligent Transportation Systems. In: Sun, Y., Song, H. (eds) Secure and Trustworthy Transportation Cyber-Physical Systems. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-3892-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3892-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3891-4

  • Online ISBN: 978-981-10-3892-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics