Skip to main content

Inherited Bone Marrow Failure Syndrome, TAM

  • Chapter
  • First Online:
Hematological Disorders in Children

Abstract

Inherited bone marrow failure syndromes (IBMFS) are a heterogeneous group of genetic disorders characterized by bone marrow failure, congenital anomalies, and increased risk of malignant disease. IBMFS may affect all blood cell lineages, causing clinical symptoms similar to aplastic anemia, or they may be restricted to one or two blood cell lineages with symptoms specific to the affected cell lineage. Early and accurate diagnosis of the disease is important, as there are implications for management and long-term follow-up. However, diagnosis is often difficult due to the wide varieties of clinical presentation. Recent advances in our understanding of IBMFS have largely come from the identification of the causative genes and investigations of their pathways. In this chapter, advances in the pathobiology and clinical management of two representative diseases, Diamond-Blackfan anemia and Fanconi’s anemia, will be described.

Trisomy 21, the genetic hallmark of Down syndrome (DS), is the most frequent human chromosomal abnormality. In neonates with DS, about 5–10% develop transient abnormal myelopoiesis (TAM). Almost all cases of TAM have mutations in GATA1. In most cases, it resolves spontaneously within 3 months. However, early death occurs in about 20% of the cases. Furthermore, approximately 20% of TAM patients develop myeloid leukemia of DS (ML-DS) within 4 years of life. Human tumors have been shown to progress by the accumulation of genetic abnormalities. The malignant progression from TAM to ML-DS offers a unique model to study the stepwise development of cancer pathogenesis. Recent studies have provided fascinating insights into the pathogenesis of TAM, details that may provide insight not only into DS leukemia but also contribute to our understanding of the pathogenesis of other leukemias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito E, et al. Molecular pathogenesis in Diamond-Blackfan anemia. Int J Hematol. 2010;92:413–8.

    Article  CAS  PubMed  Google Scholar 

  2. Lipton JM, et al. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. Pediatr Blood Cancer. 2006;46:558–64.

    Article  PubMed  Google Scholar 

  3. Vlachos A, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142:859–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vlachos A, et al. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012;119:3815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diamond LK, Blackfan KD. Hypoplastic anemia. Am J Dis Child. 1938;56:464–7.

    Google Scholar 

  6. Josephs HW, et al. Anaemia of infancy and early childhood. Medicine. 1936;15:307.

    Article  Google Scholar 

  7. Cmejla R, et al. Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat. 2007;28:1178–82.

    Article  CAS  PubMed  Google Scholar 

  8. Doherty L, et al. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2010;86:222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Draptchinskaia N, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet. 1999;21:169–75.

    Article  CAS  PubMed  Google Scholar 

  10. Farrar JE, et al. Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood. 2008;112:1582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gazda HT, et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2006;79:1110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gazda HT, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet. 2008;83:769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gazda HT, et al. Frameshift mutation in p53 regulator RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal RNA processing defect in Diamond-Blackfan anemia. Hum Mutat. 2012;33:1037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerrard G, et al. Target enrichment and high-throughput sequencing of 80 ribosomal protein genes to identify mutations associated with Diamond-Blackfan anaemia. Br J Haematol. 2013;162:530–6.

    Article  CAS  PubMed  Google Scholar 

  15. Konno Y, et al. Mutations in the ribosomal protein genes in Japanese patients with Diamond-Blackfan anemia. Haematologica. 2010;95:1293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mirabello L, et al. Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multi-case Diamond-Blackfan anemia families. Blood. 2014;124:24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang R, et al. Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anemia. Br J Haematol. 2015;168(6):854–64.

    Article  CAS  PubMed  Google Scholar 

  18. Narla A, Ebert BJ. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010;115:3196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohga S, et al. Diamond-Blackfan anemia in Japan: clinical outcomes of prednisolone therapy and hematopoietic stem cell transplantation. Int J Hematol. 2004;79:22–30.

    Article  PubMed  Google Scholar 

  20. Ball SE, et al. Diamond-Blackfan anaemia in the U.K.: analysis of 80 cases from a 20-year birth cohort. Br J Haematol. 1996;94:645–53.

    Article  CAS  PubMed  Google Scholar 

  21. Ramenghi U, et al. Diamond-Blackfan anaemia in the Italian population. Br J Haematol. 1999;104:841–8.

    Article  CAS  PubMed  Google Scholar 

  22. Willig TN, et al. Identification of new prognosis factors from the clinical and epidemiologic analysis of a registry of 229 Diamond-Blackfan anemia patients. DBA group of Societe d’Hematologie et d’Immunologie Pediatrique (SHIP), Gesellshaft fur Padiatrische Onkologie und Hamatologie (GPOH), and the European Society for Pediatric Hematology and Immunology (ESPHI). Pediatr Res. 1999;46:553–61.

    Article  CAS  PubMed  Google Scholar 

  23. Ohara A. Japan National Registry of aplastic anemia in children 1998–2005: clinical features and prognosis. Jpn J Pediatr Hematol. 2008;22:53–62.

    Google Scholar 

  24. Willig TN, et al. Mutations in ribosomal protein S19 gene and Diamond Blackfan anemia: wide variations in phenotypic expression. Blood. 1999;94:4294–306.

    CAS  PubMed  Google Scholar 

  25. Farrar JE, et al. Ribosomal protein gene deletions in Diamond-Blackfan anemia. Blood. 2011;118(26):6943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuramitsu M, et al. Extensive gene deletions in Japanese patients with Diamond-Blackfan anemia. Blood. 2012;119:2376–84.

    Article  CAS  PubMed  Google Scholar 

  27. Choesmel V, et al. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood. 2007;109:1275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choesmel V, et al. Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder. Hum Mol Genet. 2008;17:1253–63.

    Article  CAS  PubMed  Google Scholar 

  29. Flygare J, et al. Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood. 2007;109:980–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leger-Silvestre I, et al. Specific role for yeast homologs of the Diamond Blackfan Anemia-associated Rps19 protein in ribosome synthesis. J Biol Chem. 2005;280:38177–85.

    Article  CAS  PubMed  Google Scholar 

  31. Fumagalli S, et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol. 2009;11:501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Utsugisawa T, et al. Erythrocyte glutathione is a novel biomarker of Diamond-Blackfan anemia. Blood Cell Mol Dis. 2016;59:31–6.

    Article  CAS  Google Scholar 

  33. Mugishima H, et al. Hematopoietic stem cell transplantation for Diamond-Blackfan anemia: a report from the Aplastic Anemia Committee of the Japanese Society of Pediatric Hematology. Pediatr Transplant. 2007;11:601–7.

    Article  CAS  PubMed  Google Scholar 

  34. Yabe H, et al. Allogeneic stem cell transplantation for Diamond-Blackfan anemia in Japan; a report from the Inborn Errors Working Group of the Japan Society for Hematopoietic Cell Transplantation (JSHCT). Bone Marrow Transplant. 2013;48(suppl):s152.

    Google Scholar 

  35. Jaako P, et al. Dietary l-leucine improves the anemia in a mouse model for Diamond-Blackfan anemia. Blood. 2012;120:2225–8.

    Article  CAS  PubMed  Google Scholar 

  36. Payne EM. l-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del (5q) MDS by activating the mTOR pathway. Blood. 2012;120:2214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fanconi G. Familial constitutional panmyelopathy, Fanconi’s anemia. 1. Clinical aspects. Semin Hematol. 1967;4:233–40.

    CAS  PubMed  Google Scholar 

  38. Schroeder TM, et al. Spontane chromosomenaberrationen bei familiarer panmyelopathie. Humangenetik. 1964;1:194–6.

    CAS  PubMed  Google Scholar 

  39. Sasaki MS, Tonomura A. A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 1973;33:1829–36.

    CAS  PubMed  Google Scholar 

  40. Michl J, et al. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J. 2016;35(9):909–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de la Fuente J, et al. Non-TBI stem cell transplantation protocol for Fanconi anaemia using HLA-compatible sibling and unrelated donors. Bone Marrow Transplant. 2003;32:653–6.

    Article  PubMed  CAS  Google Scholar 

  42. Yabe H, et al. Allogeneic haematopoietic cell transplantation from alternative donors with a conditioning regimen of low dose irradiation, fludarabine and cyclophosphamide in Fanconi anemia. Br J Haematol. 2006;134:208–12.

    Article  CAS  PubMed  Google Scholar 

  43. Hira A, et al. Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am J Hum Genet. 2015;96(6):1001–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soulier J, et al. Related articles, links abstract detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCS pathway. Blood. 2005;105:1329–36.

    Article  CAS  PubMed  Google Scholar 

  45. Crabb DW, et al. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J Clin Invest. 1989;83(1):314–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gross ER, et al. A personalized medicine approach for Asian-Americans with the aldehyde dehydrogenase 2*2 variant. Annu Rev Pharmacol Toxicol. 2015;55:107–27.

    Article  CAS  PubMed  Google Scholar 

  47. Hira A, et al. Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood. 2013;122:3206–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24:101–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yabe M. Diagnosis and treatment for Fanconi anemia. J Jpn Pediatr Soc. 2012;116:1205–12.

    Google Scholar 

  50. Alter BP. Cancer in Fanconi anemia, 1927–2001. Cancer. 2003;97:425–40.

    Article  PubMed  Google Scholar 

  51. Kulter DI, et al. 20-year perspective on the International Fanconi Anemia Registry. Blood. 2003;101:1249–56.

    Article  CAS  Google Scholar 

  52. Shimamura A, et al. A novel diagnostic screen for defects in the Fanconi anemia pathway. Blood. 2002;100(13):4649–54.

    Article  CAS  PubMed  Google Scholar 

  53. Shahidi N, Diamond L. Testosterone-induced remission in aplastic anemia of both acquired and congenital types. Further observations in 24 cases. N Engl J Med. 1961;264:953–67.

    Article  CAS  PubMed  Google Scholar 

  54. Guardiola P, et al. Outcome of 69 allogeneic stem cell transplantations for Fanconi anemia using HLA-matched unrelated donors. Blood. 2000;95:422–9.

    CAS  PubMed  Google Scholar 

  55. Socie G, et al. Transplantation for Fanconi’s anaemia: long-term follow-up of fifty patients transplanted from a sibling donor after low-dose cyclophosphamide and thoraco-abdominal irradiation for conditioning. Br J Haematol. 1998;193:249–55.

    Article  Google Scholar 

  56. de Medeios CR, et al. Bone marrow transplantation for patients with Fanconi anemia : reduced doses of cyclophosphamide without irradiation as conditioning. Bone Marrow Transplant. 1999;24:849–52.

    Article  Google Scholar 

  57. Socie G, et al. Increased incidence of solid malignant tumors after bone marrow transplantation for severe aplastic anemia. Blood. 1991;78:277–9.

    CAS  PubMed  Google Scholar 

  58. Locatelli F, et al. The outcome of children with Fanconi anemia given hematopoietic stem cell transplantation and the influence of fludarabine in the conditioning regimen: a report from the Italian pediatric group. Haematologica. 2007;92:1381–8.

    Article  PubMed  Google Scholar 

  59. Yabe M, et al. Matched sibling donor stem cell transplantation for Fanconi anemia patients with T-cell somatic mosaicism. Pediatr Transplant. 2012;16:340–5.

    Article  PubMed  Google Scholar 

  60. Deeg HJ, et al. Malignancies after marrow transplantation for aplastic anemia after Fanconi anemia: a joint Seattle and Paris analysis of results in 700 patients. Blood. 1996;87:386–92.

    CAS  PubMed  Google Scholar 

  61. Rosenberg PS, et al. Risk of head and neck squamous cell cancer and death in patients with Fanconi anemia who did and did not receive transplants. Blood. 2005;105:67–73.

    Article  CAS  PubMed  Google Scholar 

  62. Chen CH, et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 2008;321(5895):1493–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hasle H, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia. 2003;17:277–82.

    Article  CAS  PubMed  Google Scholar 

  64. Hitzler JK. Acute megakaryoblastic leukemia in Down syndrome. Pediatr Blood Cancer. 2007;49:1066–9.

    Article  PubMed  Google Scholar 

  65. Malinge S, et al. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood. 2009;113(12):2619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zipursky A, et al. Leukemia in Down syndrome. A review. Pediatr Hematol/Oncol. 1992;9:139–49.

    Article  CAS  Google Scholar 

  67. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  68. Greene ME, et al. Mutations in GATA1 in both transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome. Blood Cell Mol Dis. 2003;31:351–6.

    Article  CAS  Google Scholar 

  69. Groet J, et al. Acquired mutations in GATA1 in neonates with Down’s syndrome with transient myeloid disorder. Lancet. 2003;361:1617–20.

    Article  CAS  PubMed  Google Scholar 

  70. Hitzler JK, et al. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood. 2007;101:4301–4.

    Article  CAS  Google Scholar 

  71. Mundschau G, et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood. 2003;101:4298–300.

    Article  CAS  PubMed  Google Scholar 

  72. Rainis L, et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood. 2003;102:981–6.

    Article  CAS  PubMed  Google Scholar 

  73. Wechsler J, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32:148–52.

    Article  CAS  PubMed  Google Scholar 

  74. Xu G, et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood. 2003;102:2960–8.

    Article  CAS  PubMed  Google Scholar 

  75. Ferreira R, et al. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol. 2005;25:1215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gutierrez L, et al. Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood. 2008;111:4375–85.

    Article  CAS  PubMed  Google Scholar 

  77. Morceau F, et al. GATA-1: friends, brothers, and coworkers. Ann N Y Acad Sci. 2004;1030:537–54.

    Article  CAS  PubMed  Google Scholar 

  78. Yoshida K, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet. 2013;45(11):1293–9.

    Article  CAS  PubMed  Google Scholar 

  79. Gamis AS, et al. Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children’s Oncology Group Study A2971. Blood. 2011;118:6752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pine SR, et al. Incidence and clinical implications of GATA1 mutations in newborns with Down syndrome. Blood. 2007;110(21):28–2131.

    Google Scholar 

  81. Roberts I, et al. GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood. 2013;122:3908–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martin DI, et al. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature. 1990;344:444–7.

    Article  CAS  PubMed  Google Scholar 

  83. Romeo PH, et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature. 1990;344:447–9.

    Article  CAS  PubMed  Google Scholar 

  84. Tsai SF, et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature. 1989;339:446–51.

    Article  CAS  PubMed  Google Scholar 

  85. Zon LI, et al. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood. 1993;81:3234–41.

    CAS  PubMed  Google Scholar 

  86. Ito E, et al. Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature. 1993;362:466–8.

    Article  CAS  PubMed  Google Scholar 

  87. Yomogida K, et al. Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development. 1994;120:1759–66.

    CAS  PubMed  Google Scholar 

  88. Pevny L, et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature. 1991;349:257–60.

    Article  CAS  PubMed  Google Scholar 

  89. Shivdasani RA, et al. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 1997;16:3965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takahashi S, et al. Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo. Blood. 1998;92:434–42.

    CAS  PubMed  Google Scholar 

  91. Ito E, et al. Expression of erythroid-specific genes in acute megakaryoblastic leukaemia and transient myeloproliferative disorder in Down’s syndrome. Br J Haematol. 1995;90:607–14.

    Article  CAS  PubMed  Google Scholar 

  92. Blobel GA, et al. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Mol Cell Biol. 1995;15:626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shimizu R, et al. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J. 2001;20:5250–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Visvader JE, et al. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol. 1995;15:634–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weiss MJ, et al. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol. 1997;17:1642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kuhl C, et al. GATA1-mediated megakaryocyte differentiation and growth control can be uncoupled and mapped to different domains in GATA1. Mol Cell Biol. 2005;25:8592–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Muntean AG, Crispino JD. Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development. Blood. 2005;106:1223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Klusmann JH, et al. Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes Dev. 2010;24:1659–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Toki T, et al. Naturally occurring oncogenic GATA1 mutants with internal deletions in transient abnormal myelopoiesis in Down syndrome. Blood. 2013;121:3181–4.

    Article  CAS  PubMed  Google Scholar 

  100. Shimizu R, et al. Leukemogenesis caused by incapacitated GATA-1 function. Mol Cell Biol. 2004;24:10814–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shimizu R, et al. GATA1-related leukaemias. Nat Rev Cancer. 2008;8:279–87.

    Article  CAS  PubMed  Google Scholar 

  102. Kanezaki R, et al. Down syndrome and GATA1 mutations in transient abnormal myeloproliferative disorder: mutation classes correlate with progression to myeloid leukemia. Blood. 2010;116:4631–8.

    Article  CAS  PubMed  Google Scholar 

  103. Alford KA, et al. Analysis of GATA1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. Blood. 2011;118:2222–38.

    Article  CAS  PubMed  Google Scholar 

  104. Miyauchi J, et al. Unusual diffuse liver fibrosis accompanying transient myeloproliferative disorder in Down’s syndrome: a report of four autopsy cases and proposal of a hypothesis. Blood. 1992;80:1521–7.

    CAS  PubMed  Google Scholar 

  105. Shimada A, et al. Fetal origin of the GATA-1 mutation in identical twins with transient myeloproliferative disorder and acute megakaryoblastic leukemia accompanying Down’s syndrome. Blood. 2004;103:366.

    Article  CAS  PubMed  Google Scholar 

  106. Taub JW, et al. Prenatal origin of GATA1 mutations may be an initiating step in the development of megakaryocytic leukemia in Down syndrome. Blood. 2004;104:1588–9.

    Article  CAS  PubMed  Google Scholar 

  107. Ahmed M, et al. Natural history of GATA1 mutations in Down syndrome. Blood. 2004;103:2480–9.

    Article  CAS  PubMed  Google Scholar 

  108. Li Z, et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet. 2005;37:613–9.

    Article  CAS  PubMed  Google Scholar 

  109. Shimizu R, et al. Induction of hyperproliferative fetal megakaryopoiesis by an N-terminally truncated GATA1 mutant. Genes Cells. 2009;14:1119–31.

    Article  CAS  PubMed  Google Scholar 

  110. Zubizarreta P, et al. Transient myeloproliferative disorder associated with trisomy 21, a wide range syndrome: report of two cases with trisomy 21 mosaicism. Med Pediatr Oncol. 1995;25:60–4.

    Article  CAS  PubMed  Google Scholar 

  111. Hollanda LM, et al. An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Nat Genet. 2006;38:807–12.

    Article  CAS  PubMed  Google Scholar 

  112. Chou ST, et al. Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood. 2008;112:4503–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tunstall-Pedoe O, et al. Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. Blood. 2008;112:4507–11.

    Article  CAS  PubMed  Google Scholar 

  114. Look AT. A leukemogenic twist for GATA1. Nat Genet. 2002;32:83–4.

    Article  CAS  PubMed  Google Scholar 

  115. Korbel JO, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci U S A. 2009;106:12031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rainis L, et al. The proto-oncogene ERG in megakaryoblastic leukemias. Cancer Res. 2005;65:7596–602.

    CAS  PubMed  Google Scholar 

  117. Salek-Ardakani S, et al. ERG is a megakaryocytic oncogene. Cancer Res. 2009;69:4665–7463.

    Article  CAS  PubMed  Google Scholar 

  118. Stankiewicz MJ, Crispino JD. ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood. 2009;113:3337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu G, et al. Physical association of the patient-specific GATA1 mutants with RUNX1 in acute megakaryoblastic leukemia accompanying Down syndrome. Leukemia. 2006;20:1002–8.

    Article  CAS  PubMed  Google Scholar 

  120. Elagib KE, et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood. 2003;101:4333–41.

    Article  CAS  PubMed  Google Scholar 

  121. De Vita S, et al. Trisomic dose of several chromosome 21 genes perturbs haematopoietic stem and progenitor cell differentiation in Down’s syndrome. Oncogene. 2010;29:6102–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Toki T, et al. The key role of stem cell factor/KIT signaling in the proliferation of blast cells from Down syndrome-related leukemia. Leukemia. 2009;23:95–103.

    Article  CAS  PubMed  Google Scholar 

  123. Banno K, et al. Systematic cellular disease models reveal synergistic interaction of trisomy 21 and GATA1 mutations in hematopoietic abnormalities. Cell Rep. 2016;15:1228–4121.

    Article  CAS  PubMed  Google Scholar 

  124. Malinge S, et al. Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Investig. 2012;122:948–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Deguchi K, Gilliland DG. Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML. Leukemia. 2002;16:740–4.

    Article  CAS  PubMed  Google Scholar 

  126. Blink M, et al. Frequency and prognostic implications of JAK 1-3 aberrations in down syndrome acute lymphoblastic and myeloid leukemia. Leukemia. 2011;25:1365–8.

    Article  CAS  PubMed  Google Scholar 

  127. Kiyoi H, et al. JAK3 mutations occur in acute megakaryoblastic leukemia both in Down syndrome children and non-Down syndrome adults. Leukemia. 2007;21:574–6.

    Article  CAS  PubMed  Google Scholar 

  128. Malinge S, et al. Activating mutations in human acute megakaryoblastic leukemia. Blood. 2008;112:4220–6.

    Article  CAS  PubMed  Google Scholar 

  129. Sato T, et al. Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukemia accompanying Down syndrome. Br J Haematol. 2008;141:681–8.

    Article  CAS  PubMed  Google Scholar 

  130. Walters DK, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell. 2002;10:65–75.

    Article  CAS  Google Scholar 

  131. Klusmann JH, et al. Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood. 2008;111(6):2991–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Massey GV, et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children’s Oncology Group (COG) Study POG-9481. Blood. 2006;107(12):4606–13.

    Article  CAS  PubMed  Google Scholar 

  133. Muramatsu H, et al. Risk factors for early death in neonates with Down syndrome and transient leukaemia. Br J Haematol. 2008;142(4):610–5.

    Article  PubMed  Google Scholar 

  134. Smercek JM, et al. Fetal hydrops and hepatosplenomegaly in the second half of pregnancy: a sign of myeloproliferative disorder in fetuses with trisomy 21. Ultrasound Obstet Gynecol. 2001;17:403–9.

    Article  Google Scholar 

  135. Al-Kasim F, et al. Incidence and treatment potentially lethal diseases in transient leukemia of Down syndrome: Pediatric Oncology Group Study. J Pediatr Hematol Oncol. 2002;24:9–13.

    Article  PubMed  Google Scholar 

  136. Ikeda F, et al. Exome sequencing identified as a novel causative gene for Diamond-Blackfan anemia. Haematologica. 2017;102(3):e93–e96.

    Google Scholar 

  137. Sankaran VG, et al. Exome sequencing identifies GATA1 mutations resulting Diamond-Blackfan anemia. J Clin Invest. 2012;122:2439–43.

    Google Scholar 

  138. Vlachos A, et al. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012;119:3815–19.

    Google Scholar 

  139. Langevin F, et al. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature. 2011;475:53–8.

    Google Scholar 

  140. Garaycoechea J, et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature. 2012;489:571–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuro Ito M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ito, E., Terui, K., Toki, T. (2017). Inherited Bone Marrow Failure Syndrome, TAM. In: Ishii, E. (eds) Hematological Disorders in Children. Springer, Singapore. https://doi.org/10.1007/978-981-10-3886-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3886-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3885-3

  • Online ISBN: 978-981-10-3886-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics