Skip to main content

AIM/CGE V2.0 Model Formula

  • Chapter
Post-2020 Climate Action

Abstract

This chapter describes the (1) model structure of AIM/CGE (Asia-Pacific Integrated Model/Computable General Equilibrium), (2) data structure (social accounting matrix (SAM)), and (3) formula and list of sets, parameters, equations, and variables. The aim of this chapter is to present all equations written in the model which is used in the other chapter’s analysis and make the analysis made in this book transparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the default version classification, but if the long-term simulation like till 2100 is the objectives, household government and enterprises are treated as one aggregated representative household.

  2. 2.

    Energy commodity has specific treatment. It is discussed below.

  3. 3.

    Coal (COA), crude oil (OIL), natural gas (GAS), petroleum products (P_C), town gas (GDT), and electricity (ELY).

  4. 4.

    The equations in the “international trade block” are involved only if you chose a global model.

  5. 5.

    This equation is currently not used.

  6. 6.

    Download from http://edgar.jrc.ec.europa.eu/index.php on 4 Aug. 2010.

  7. 7.

    This equation is currently not used.

References

  • Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Fernandes S, Trautmann N (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Glob Biogeochem Cycles 21:GB2018. doi:10.1029/2006GB002840

    Article  Google Scholar 

  • EEA (Europe Environmental Agency) (2009) EMEP/EEA air pollutant emission inventory guidebook 2009, No. 9

    Google Scholar 

  • Hyman RC, Reilly JM, Babiker MH, De Masin A, Jacoby HD (2003) Modeling non-CO2 greenhouse gas abatement. Environ Model Assess 8:175–186

    Article  Google Scholar 

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds). IGES, Japan

    Google Scholar 

  • Lofgren H, Harris RL, Robinson S (2002) A standard computable general equilibrium (CGE) model in GAMS, IFPRI

    Google Scholar 

  • Masui T, Matsuoka Y, Kainuma M (2006) Long-term CO2 emission reduction scenarios in Japan. Environ Econ Policy Stud 7(3):347–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Fujimori .

Editor information

Editors and Affiliations

Mathematical Statement

Mathematical Statement

12.1.1 Sets

a ∈ A :

:  a set of activities

a ∈ ACES(⊂A):

:  a set for nonenergy transformation

a ∈ ACES_ENE(⊂A):

:  a set of activities with a CES function at energy nest

a ∈ ALEO(⊂A):

:  a set for energy transformation

a ∈ ALEO_ENE(⊂A):

:  a set of activities with a CES function at energy nest

aagg ∈ Aagg :

:  a set of aggregated activity

c ∈ C :

:  a set of commodities (also referred to as c’ and C’)

C_CCS :

:  a set of CCS service

c ∈ CD(⊂C):

:  a set of commodities with domestic sales of domestic output

c ∈ CDN(⊂C):

:  commodities without domestic market sales of domestic output (complement of CD)

c ∈ CE(⊂C):

:  a set of exported commodities (with domestic production)

c ∈ CEN(⊂C):

:  non-exported commodities (complement of CE)

c ∈ CM(⊂C):

:  a set of imported commodities

c ∈ CMN(⊂C):

:  a set of nonimported commodities

c ∈ CNEN :

:  a set of nonenergy commodities

c ∈ C_TRS :

:  a set of transport service

c ∈ CX(⊂C):

:  a set of commodities with domestic output

c ∈ ENE :

:  a set of energy commodities (COM_COA, COM_OIL, COM_GAS, COM_P_P, COM_COP, COM_ELY, COM_GDT)

c ∈ ENEENDMAP(c, K_END):

:  Mapping for enduse energy kinds and commodity

ch ∈ CH :

:  household commodity category ch

emcm ∈ EMCM :

:  a subset of emission reduction countermeasures

emcm ∈ EMCM0(⊂EMCM):

:  a subset of emission reduction countermeasures which are for nonenergy-related emissions

emcm ∈ EMCM1(⊂EMCM):

:  a subset of emission reduction countermeasures which are for energy-related emissions

emcm ∈ EMCM2(⊂EMCM):

:  a subset of emission reduction countermeasures which are for biomass power plant absorption

emcm ∈ EMCM :

:  a set of emission reduction countermeasures (CCS)

f ∈ F(=F ):

:  a set of factors

f ∈ FCAP(=F):

:  a set of capital (new and old, “ncap” and “cap”)

f ∈ F lab :

:  labor (skilled and unskilled labor)

g ∈ G :

:  a set of emission gases

h ∈ H(⊂INSDNG):

:  a set of households

i ∈ INS :

:  a set of institutions (domestic and rest of the world)

i ∈ INSD(⊂INS):

:  a set of institutions (domestic and rest of the world)

i ∈ INSDNG(⊂INSD):

:  a set of domestic nongovernment institutions

emsc ∈ EMSC :

:  a set of emission sources

i ∈ I :

:  energy service i

k ∈ K_END :

:  energy kind for end-use device

l ∈ L :

:  end-use device l

LI(l, i):

:  mapping device l and energy service i

r ∈ R :

:  a set of regions

ragg ∈ Ragg :

:  a set of aggregated regions

t ∈ T :

:  a set of time series

tc ∈ TC :

:  a set of technology

tr ∈ TR :

:  a set of transport mode

12.1.2 Parameters

12.1.2.1 Latin Letters

ad r,ac,l,i :

:  supply output of service i per operating unit of device l in sector ac (same as specific service output)

\( {aeei}_{r, c, ac}^t \) :

:  annual AEEI rate of energy commodity c, sector ac, time t, and region r

Baseyear :

:  base year

bioc r,ac :

:  biomass consumption coefficient to the activity level of sector ac

biod r,ac :

:  decreasing rate of biomass consumption of sector ac

careneeff r,h :

:  household passenger car energy coefficient

cdst_wd :

:  conversion factor for carbon density

cf_v2t :

:  conversion factor from volume to ton

CPI_base r :

:  base year’s CPI

crt_in r :

:  transfer from rest of the world

crt_out r :

:  transfer to rest of the world

cwts r,c :

:  weight of commodity c in the consumer price index

\( {dep}_r^t \) :

:  capital depreciation rate in time t and region r

dfpq r,c,I :

:  price differences of commodity price among inputs sectors

dis_exp r,c :

:  price difference of the export commodity c

dis_imp r,c :

:  price difference of the import commodity c

dwts r,c :

:  weight of commodity c in the producer price index

ecfneng r,g :

:  emission coefficient of nonenergy-related emissions

ecf_gdpela r,r :

:  elasticity of Fgas to GDP increase in region r, gas g.

ecoefluc ,fl,sprl :

:  land-use change emission coefficient AEZ fl, region r, land classification sprl

efacl r,ac,g,emsc :

:  emission factors for emissions related to activity level by sector ac, energy source emsc,

efbio r,ac,g :

:  emission factors for emissions fossil fuel combustion by sector ac

efffc r,c,ac,g :

:  emission factors for emissions fossil fuel combustion by sector ac consuming of goods c

efint_trs tr,c,g :

:  international transport emissions coefficients

EH_base r,h :

:  household expenditure of base year

\( {el}_{r, c, h}^{carh} \) :

:  price elasticity parameter of Logit function for transport mode energy source selection

\( {el}_{r, c, a}^{inden} \) :

:  price elasticity parameter of Logit function for industrial activity energy source selection

\( {el}_{r, tr}^{pssincome} \) :

:  passenger transport income elasticity

\( {el}_{r, c, a}^{trsen} \) :

:  price elasticity parameter of Logit function for transport mode energy source selection

\( {el}_{r, tr}^{trspr} \) :

:  transport energy demand price elasticity

emcoef_end r,ac,K_END,g :

:  emission coefficient for end-use device

end_ped_base r,K_END,ac :

:  base energy price of end-use stock

enur r,c,ac :

:  energy-used ratio (1-nonenergy-use ratio)

ewts r,c :

:  weight of commodity c in the export price index

faceff r,c,a,* :

:  old and new capital efficiency parameter (only used for power sectors)

\( fac\_{gr}_{r, f}^t \) :

:  expected factor input growth rate (calculated by 12.5.1 and 12.5.2)

fcmult r,f,a :

:  productivity shifter of factor f in activity a

\( gdp\_{gr_r^t}^{\ast } \) :

:  expected GDP growth target (annual growth rate)

gdp_base r :

:  base-year GDP of region r.

\( \overline{ghgc_r} \) :

:  GHG emission constraint

\( \overline{{ghgt\_\mathit{\exp}\_ cap}_r} \) :

:  GHG emission trading (export) limit

\( \overline{{ghgt\_ imp\_ cap}_r} \) :

:  GHG emission trading (import) limit

gwp g :

:  global warming potential of gas g

gwts r,c :

:  weight of commodity c in the government price index

ica r,c,a :

:  quantity of c per unit of aggregate intermediate input a

ied r,ac,l,K_END :

:  energy use of energy kind k per operating unit (or specific energy input) of device l in sector ac region r

iena r,a :

:  quantity of aggregate energy input per activity unit

iene r,c,a :

:  energy commodity consumption ratio

indserincel r,a :

:  output elasticity of energy service demand of industry

inta r,a :

:  quantity of aggregate nonenergy intermediate input per activity unit

inttrenecoeft r,c :

:  international transport energy coefficient

invc r,ac,l :

:  annualized investment cost per unit of combination of device l in sector ac and region r

ires r,a :

:  quantity of aggregate resource input per activity unit

iva r,a :

:  quantity of value added per activity unit

ivae r,a :

:  quantity of value-added energy composite per activity unit

ivfa r,f,a :

:  input coefficient of factors for Leontief inputs

iwts r,c :

:  weight of commodity c in the capital formation price index

\( {labor\_ stock}_r^t \) :

:  labor stock in time t and region r

\( {lab\_ gr}_r^t \) :

:  labor stock (annual) growth rate in time t and region r

landeff r,f,a :

:  land productivity coefficient

loss r,c :

:  distribution loss rate

mps01r,i :

:  0–1 parameter with 1 for institutions with potentially flexed direct tax rates

mwts r,c :

:  weight of commodity c in the import price index

oped r,ac,l :

:  operating cost except for energy per unit of combination of device l in sector ac and region r

pasch r,h :

:  income elasticity of passenger car service demand

pcaru r,h :

:  household passenger car service demand in base year

pene_tr_base r,tr :

:  energy price of transport mode tr in base year

plandt_ini , r,fl :

:  total unused land price

poph r,h :

:  population of household h

pres_base r,a :

:  resource price (normally 1)

prluch y,r,fl :

:  prior year’s land-use change

Pyear :

:  the calculation year

qe_up r,c :

:  export constraint

qfrspre r,fl,sprl :

:  previous year’s primary land area AEZ fl, region r, land classification sprl

qlandtotara r,fl :

:  total AEZ arable land

quotaqa ragg,aagg :

:  quota of aggregated region ragg and aggregated activity aagg

renew_up r,a :

:  capacity of the activity level a (for power sector energy)

resserincel r,h :

:  income elasticity of energy service demand of household

sd_base r,a,i :

:  base service demand coefficient of industry

sd_base r,h,i :

:  base service demand coefficient of household

sh_ely_up r,a :

:  power generation share of activity a

shii_resource r,I :

:  a ratio of transfer to institution i of total transfer in a country

shii_use r,I :

:  share of net income of i

shif r,i,f :

:  share of domestic institution i in income of factor f

shincome r,I :

:  total income share of GHG emission cost for institution i

shres r,I :

:  resource income share of institution i

stch r,c :

:  stock change of commodity c (positive)

stch2 r,c :

:  stock change of commodity c (negative)

stka_pre r,ac,l :

:  previous year’s stock of combination of device l in sector ac

ta r,a :

:  tax rate for activity

te r,c :

:  export tax rate

tf r,f :

:  direct tax rate for factor f

tins01r,i :

:  0.1 parameter with 1 for institutions with potentially flexed direct tax rates

tm r,c :

:  import tariff rate

tq r,c,ac :

:  rate of sales tax (as share of composite price inclusive of sales tax). Suffix ac includes activity a and institution i

transfr_crt_in r :

:  current transfer from rest of the world

transfr_crt_out r :

:  current transfer to rest of the world

transfr r,f :

:  factor transfer to abroad

transfr_f r,f :

:  factor transfer from abroad

trscvf r,tr,ac :

:  transport service demand by modes

trseneeffi r,tr :

:  transport energy efficiency

trspc_enecoef r,h,c :

:  passenger transport industry and residential efficiency difference

trscef r,tr :

:  passenger transport demand coefficient

tsh c :

:  share of international trade service to world total international trade service

tva r,a :

:  rate of value-added tax for activity a

tw r,c :

:  international trade cost ratio

Year y :

:  year order (ex; base year is 1)

12.1.2.2 Greek Letters

\( {\alpha}_{r, c}^{ac} \) :

:  shift parameter for domestic commodity aggregation function

\( {\alpha}_{r, c}^q \) :

:  an Armington function shift parameter

\( {\alpha}_{r, c}^t \) :

:  a CET function shift parameter

\( {\alpha}_{a, tc}^{tech} \) :

:  share parameter for technology Logit selection function

\( {\alpha}_{r, a}^{va} \) :

:  efficiency parameter in the CES value-added function

\( {\alpha_{r, a}^{va}}^{\ast } \) :

:  adjusted efficiency parameter in the CES value-added function

\( {\alpha}_{r, a}^{vae} \) :

:  efficiency parameter in the CES energy and value-added function

α bms fl :

:  a parameter of biomass stock

\( {\beta}_{r, c, h}^{carh} \) :

:  share parameter of Logit function for household car energy source selection

\( {\beta}_{r, c, a}^{inden} \) :

:  share parameter of Logit function for industrial activity energy source selection

\( {\beta}_{r, ch, h}^m \) :

:  marginal share of consumption spending on marketed commodity ch for household h

\( {\beta}_{r, a, tc}^{tech} \) :

:  exponent of technology Logit selection

\( {\beta}_{r, c, tr}^{trsen} \) :

:  share parameter of Logit function for transport mode energy source selection

\( {\lambda}_{r, ac, l}^d \) :

:  operating rate of device l in sector ac

\( {\lambda}_c^w \) :

:  depreciation rate of traded commodity c

\( {\rho}_{r, c}^{ac} \) :

:  domestic commodity aggregation function exponent

\( {\rho}_{r, fl}^{ara} \) :

:  exponent parameter of arable land input

\( {\rho}_{r, a}^{ltc} \) :

:  exponent parameter crop input

\( {\rho}_{r, fl}^{ltc} \) :

:  exponent parameter grazing input

\( {\rho}_{r, fl}^{ltf} \) :

:  exponent parameter agriculture and forestry input

\( {\rho}_{r, c}^q \) :

:  an Armington function exponent

\( {\rho}_{r, c}^t \) :

:  a CET function exponent

\( {\rho}_{r, a}^{ls} \) :

:  exponent parameter of AEZ input function

\( {\rho}_{r, fl}^{ltt} \) :

:  exponent parameter crop and grazing input

\( {\rho}_{r, a}^{va} \) :

:  CES value-added function exponent

\( {\rho}_{r, a}^{vae} \) :

:  CES energy and value-added function exponent

\( {\delta}_{r, a, c}^{ac} \) :

:  shift parameter for domestic commodity aggregation function

\( {\delta}_{r, fl,\ast}^{ara} \) :

:  share parameter of arable land input

\( {\delta}_{r, fl}^{ltc} \) :

:  share parameter of crop AEZ input

\( {\delta}_{r, fl}^{ltc} \) :

:  share parameter of grazing AEZ input

\( {\delta}_{r, fl, a}^{ls} \) :

:  share parameter of AEZ input

\( {\delta}_{r, fl}^{ltf} \) :

:  share parameter of agriculture and forestry input

\( {\delta}_{r, fl}^{ltt} \) :

:  share parameter of crop and grazing input

\( {\delta}_{r, c}^q \) :

:  an Armington function share parameter

\( {\delta}_{r, c}^t \) :

:  a CET function share parameter

\( {\delta}_{r, a}^{va} \) :

:  CES value-added function share parameter for factor f in activity a

\( {\delta}_{r, a}^{vae} \) :

:  CES energy and value-added function share parameter in activity a

θ r,a,c :

:  yield of output c per unit of activity a

\( {\psi}_{r, a, c}^{ac} \) :

:  share parameter

\( {\psi}_{r, c}^m \) :

:  scale parameter for import share of commodity c

\( {\psi_2}_{r, c}^m \) :

:  scale parameter for domestically produced goods share of commodity c

\( {\psi}_{r, c}^t \) :

:  scale parameter for export share of commodity c

\( {\psi_2}_{r, c}^t \) :

:  scale parameter for domestically produced share of commodity c

\( {\eta}_{r, a, c}^{ac} \) :

:  elasticity of domestic commodity aggregation

\( {}^{\eta_{r, ac, l}^{end}} \) :

:  exponent of Logit function

\( {\eta}_{r, c}^m \) :

:  elasticity of domestic consumption commodity aggregation

\( {\eta}_{r, c}^t \) :

:  elasticity of domestic produced commodity aggregation

\( {\sigma}_{r, a, g, emsc}^{ghg} \) :

:  elasticity of the additional emission reductions of nonenergy-related emissions

σghg_int :

:  parameter for a MAC curve of international transport CO2 reduction

σghg_hfc r,g :

:  parameter for a MAC curve of international transport CO2 reduction

ς r,a :

:  a parameter for operation ratio

θh r,ch,h :

:  subsistence consumption of household commodity category ch for household h

αh r,ch,h :

:  a parameter for AIDADS

βh r,ch,h :

:  a parameter for AIDADS

τ l :

:  lifetime of device l

φ r,ac,i :

:  a measure of service efficiency of service type i in sector ac region r

12.1.3 Exogenous Variables

\( \overline{DTINS_{r, i}} \) :

:  change in domestic institution tax share (= 0 for base; exogenous variable)

\( \overline{FSAV_r} \) :

:  foreign savings (FCU) (exogenous variable)

\( \overline{GADJ_r} \) :

:  government consumption adjustment factor (exogenous variable)

\( \overline{ghgc_r} \) :

:  GHG emission constraint

\( \overline{{ghgt\_ imp\_ cap}_r} \) :

:  GHG emission trading (import) limit

\( \overline{{ghgt\_\mathit{\exp}\_ cap}_r} \) :

:  GHG emission trading (export) limit

\( \overline{ghgtot\_ c} \) :

:  global GHG emission constraint

\( \overline{mps_{r, i}} \) :

:  base savings rate for domestic institution i

\( \overline{MPSADJ_r} \) :

:  savings rate scaling factor (= 0 for base)

\( {\overline{QFS}}_{r, f} \) :

:  quantity supplied of factor (exogenous variable)

\( \overline{qg_{r, c}} \) :

:  government consumption adjustment factor (exogenous variable)

\( \overline{qinv_{r, c}} \) :

:  base-year quantity of fixed investment demand

\( \overline{tins_{r, i}} \) :

:  rate of direct tax on domestic institutions i

\( \overline{TINSADJ_r} \) :

:  direct tax scaling factor (= 0 for base; exogenous variable)

\( \overset{-}{{trnsfr\_ CRT}_{r," gov"}} \) :

:  governmental transfer in base year

12.1.4 Endogenous Variables

BFRATIO r,ac,i :

:  end-use biofuel ratio

COPR r,a :

:  operation ratio

CPI r :

:  consumer price index (exogenous variable)

DELTA_AD2 r,c :

:  adjustment variable for export constraint

DMPS r :

:  0–1 parameter with 1 for institutions with potentially flexed direct tax rates

DPI r :

:  producer price index for domestically marketed output

EG r :

:  government expenditures

EH r,h :

:  household consumption expenditures

EH_base r,h :

:  household expenditure of base year

EMALI r,a,g,emsc :

:  emissions nonenergy-related emission by industrial activity a, energy source emsc

EMALH r,h,g.emsc :

:  emissions related to activity level by household h, emission source emsc

EMBIH r,h,g :

:  emissions related to biomass combustion emitted by household h

EMBII r,a,g :

:  emissions related to biomass combustion emitted by industrial activity a

EMFFH r,c,h,g :

:  emissions related to fossil fuel combustion emitted by household h consumption of goods c

EMFFI r,c,a,g :

:  emissions related to fossil fuel combustion emitted by industrial activity a consuming of goods c

EMFFINT tr,g :

:  gas g emissions from international transport

EMNEG r,g :

:  nonenergy-related emissions C2F6, SF6, CF4, and HFCs

END_ENE r,ac,i,K_END :

:  energy use of service i in end-use energy

END_PCOST r,ac,l :

:  end-use device price

END_PED r , K_END , ac :

:  end-use energy price

END_QEOR r,ac,i :

:  end-use device (not working)

END_QR r,ac,l :

:  end-use device new investment

END_QRT r,ac,i :

:  end-use total new investment for service

END_QXD r,ac,l :

:  end-use device stock operation

END_STK r,ac,l :

:  end-use device stock

EPI r :

:  export price index

EXR r :

:  exchange rate country r

GDP r :

:  GDP of region r

GHGCA_NENE r,a :

:  GHG emission cost related biomass burning and CCS negative emissions of activity a in region r

GHGCA_NENE r,a :

:  GHG emission cost related to nonenergy consumption

GHGTCOST r :

:  GHG emission cost

GHGT_CT r :

:  GHG emission from region r (CO2 equivalent) includes emission permit import

GHGT r :

:  GHG emission from region r (CO2 equivalent)

GHG_IMP r :

:  GHG emission credit import (net)

GPI r :

:  government price index

GSAV r :

:  government savings

IADJ r :

:  investment adjustment factor (exogenous variable)

IPI r :

:  capital formation price index

MPI r :

:  import price index

MPS r,I :

:  marginal propensity to save for domestic nongovernment institution (exogenous variable)

NERED r,a,g,emsc :

:  emission reduction caused by the GHG emission price, energy source emsc

PAGRT r,fl :

:  agriculture AEZ-aggregated land price

PA r,a :

:  activity price (gross revenue per activity unit)

PCROP r,fl :

:  crop field AEZ-aggregated land price

PDD r,c :

:  demand price for commodity produced and sold domestically

PDS r,c :

:  supply price for commodity produced and sold domestically

PENE r,a :

:  price of (aggregate) energy input

PE_base r,c :

:  base year’s PE

PE r,c :

:  export price of commodity c

\( {PENE}_{r, a}^{bau} \) :

:  energy price (BaUcase)

PENE_TR r,tr :

:  energy price of transport mode tr

PGHG_EXP_QUO r :

:  GHG emission price generated by export quota

PGHG_G :

:  GHG emission price corresponding to the global emission constraint

PGHG_G r :

:  global GHG emission price

PGHG_IMP_QUO r :

:  GHG emission price generated by import quota

PGHG r :

:  GHG emission price in region r (US$/tCO2)

PGRZ r,fl :

:  grazing AEZ-aggregated land price

PINTA r,a :

:  aggregate intermediate input price for activity a

PLANDT r,fl :

:  total AEZ-aggregated land price

PLAND r,fl,a :

:  land price of activity a and AEZ fl

PM_base r,c :

:  base year’s PM

PM r,c :

:  composite commodity price (including import tax and transaction costs)

PQD_base r,c :

:  base year’s PQD

PQD r,c :

:  composite commodity price excluding sales tax

PQH r,ch,h :

:  price of household category commodity ch

PQ r,c :

:  composite commodity price excluding sales tax

PRES r,a :

:  price of resource input

PTRS c :

:  price of international trade service

PVAE r,a :

:  price of (aggregate) energy and value-added bundle (nonenergy transformation sector)

PVA r,a :

:  price of (aggregate) value added

PWE c :

:  f.o.b. export world price

PWM c :

:  world import price (c.i.f) of commodity c

PX2 r,c :

:  aggregate producer price for commodity including stock change effects

PXAC r,a,c :

:  producer price of commodity c for activity a

PX r,c :

:  aggregate producer price for commodity

QAGRT r,fl :

:  agriculture AEZ-aggregated land use

QA r,a :

:  quantity (level) of activity

QCARU r,h :

:  household passenger car service demand

QCARUENET r,h :

:  household passenger car energy use

QCH r,ch,h :

:  household consumption of household commodity category ch

QCROP r,fl :

:  crop field AEZ-aggregated land use

QDTRST r,tr :

:  total transport service demand by modes

QDTRS r,tr,ac :

:  freight transport service demand by sector ac and modes

QD r,c :

:  quantity sold domestically of domestic output

QENE r,a :

:  quantity of (aggregate) energy input

QEND_ENE r,c,ac,i :

:  energy use of service i in CGE energy

QE r,c :

:  quantity of exports

QF r,f,a :

:  quantity demanded of factor f from activity a

QGRZ r,fl :

:  grazing AEZ-aggregated land use

QG r,c :

:  government consumption demand for commodity

QH r,c,h :

:  quantity of consumption of marketed commodity c for household h

QINTA r,a :

:  quantity of aggregate intermediate input

QINT r,c,a :

:  quantity of commodity c as intermediate input to activity a

QINV r,c :

:  quantity of fixed investment demand for commodity

QLAND r,fl,a :

:  land quantity of activity a and AEZ fl

QLANT r,fl :

:  total AEZ-aggregated land use

QM r,c :

:  quantity of imports of commodity

QPRMLANDT r,fl :

:  primary land area AEZ fl, region r

QQ r,c :

:  quantity of goods supplied to domestic market (composite supply)

QRED r,emcm,a :

:  input of counter emission reduction countermeasures of activity a and measure emcm

QRES r,a :

:  quantity of resource input

QSD r,ac,i :

:  service demand

QTRS c :

:  quantity of international trade service

QVAE r,a :

:  quantity of (aggregate) energy and value-added bundle (nonenergy transformation sector)

QVA r,a :

:  quantity of (aggregate) value added

QWE r,c :

:  quantity of exports of commodity

QWM r,c :

:  quantity of imports of commodity

QX2 r,c :

:  aggregate marketed quantity of domestic output of commodity including stock change

QXAC r,a,c :

:  marketed output quantity of commodity c from activity a

QX r,c :

:  aggregate marketed quantity of domestic output of commodity

RQUOQA r,a :

:  shadow subsidies of the fixed activity level

SHAC r,a,c :

:  share of the commodity c produced by activity a

SHQE r,c :

:  share of domestically sold and export commodity c

SHQM :

:  share of domestically sold and imported commodity c

TBH r,h :

:  biomass consumption by household h

TBI r,a :

:  biomass consumption by activity a

TINS r,I :

:  direct tax rate for institution i

TRII_Resource r,I :

:  transfers to institution i

TRII_Use r,I :

:  transfers from institution i

TRS_ENE_FL r,c,tr :

:  transport energy demand by modes and energy sources

TRS_ENE r,tr :

:  transport energy demand by modes

TSCT r,a,tc :

:  technology tc’s share in sector a and region r

VRENCAP r,a :

:  rent of electricity capacity activity a in region r

VRENCAPTOT r :

:  rent related to electricity capacity

Vu r,h :

:  utility of household h defined by AIDADS

r,ch,h :

:  marginal share of consumption spending on household commodity category ch for household h

WFDIST r,f,a :

:  factor price distortion factor for factor f in activity a

WF r,f :

:  average price of factor

YF r,f :

:  income of factor f

YG r :

:  government revenue

YI r,I :

:  income of institution i (in the set INSDNG)

YIF r,i,f :

:  income to domestic institution i from factor f

12.1.5 Equation

  • Import price:

$$ {PM}_{r, c}={PWM}_c\cdot {dis\_ imp}_{r, c}\cdot \left(1+{tm}_{r, c}\right)\cdot {EXR}_r,\kern2em \forall c\in CM $$
  • Export price:

$$ {PE}_{r, c}={PWE}_c\cdot {dis\_\mathit{\exp}}_{r, c}\cdot \left(1-{te}_{r, c}\right)\cdot \overline{EXR_r},\kern2em \forall r\in R, c\in CE $$
  • Demand price of domestic nontraded goods:

$$ {PDD}_{r, c}={PDS}_{r, c},\kern2em \forall r\in R, c\in CD $$
  • Absorption:

$$ {PQ}_{r, c}\cdot {QQ}_{r, c}={PDD}_{r, c}\cdot {QD}_{r, c}+{PM}_{r, c}\cdot {QM}_{r, c},\kern2em \forall r\in R, c\in \left( CD\cup CM\right) $$
  • Commodity market monetary balance:

$$ \begin{array}{l}{PQ}_{r,c}\cdot {QQ}_{r,c}={ PQ D}_{r,c}\cdot \left(\begin{array}{l}\sum_{a\in A}{\mathit{\mathrm{dfpq}}}_{r,c,a}\cdot {\mathit{\mathrm{QINT}}}_{r,c,a}+\sum_{h\in H}{\mathit{\mathrm{pfdq}}}_{r,c,h}\cdot {QH}_{r,c,h}\\ {}+{\mathit{\mathrm{pfdq}}}_{r,c," gov"}\cdot {QG}_{r,c}+{\mathit{\mathrm{pfdq}}}_{r,c,"S-I"}\cdot {\mathit{\mathrm{QINV}}}_{r,c}\end{array}\right),\\ {}\kern6.5em \forall r\in R,c\in CX\end{array} $$
  • Marketed output with stock change:

$$ QX{2}_{r, c}={QX}_{r, c}+{stch}_{r, c},\kern2em \forall r\in R, c\in CX $$
  • Marketed output value with stock change:

$$ PX{2}_{r, c}\cdot QX{2}_{r, c}={PX}_{r, c}\cdot {QX}_{r, c},\kern2em \forall r\in R, c\in CX $$
  • Marketed output value:

$$ PX{2}_{r, c}\cdot QX{2}_{r, c}={PDS}_{r, c}\cdot {QD}_{r, c}+{PE}_{r, c}\cdot {QE}_{r, c},\kern2em \forall r\in R, c\in CX $$
  • Activity price:

$$ {PA}_{r, a}\cdot {QA}_{r, a}\cdot \left(1+{RQUOQA}_{r, a}\right)=\sum_{c\in C}{PXAC}_{r, a, c}\cdot {QXAC}_{r, a, c},\kern2em \forall r\in R, a\in A $$
  • Aggregate Nonenergy intermediate input price:

$$ \begin{array}{l}{\mathit{\mathrm{QINT}\mathrm{A}}}_{r,a}\cdot {\mathit{\mathrm{PINTA}}}_{r,a}=\sum_{c\in \mathit{\mathrm{CNEN}}}{\mathit{\mathrm{dfpq}}}_{r,c,a}\cdot {PQD}_{r,c}\cdot {\mathit{\mathrm{QINT}}}_{r,c,a}\cdot \left(1+{tqd}_{r,c,a}\right)\\ {}\kern9.4em \forall r\in R,a\in A,c\in \mathit{\mathrm{CNEN}}\end{array} $$
  • Activity revenue and costs (nonenergy transformation sector):

$$ \begin{array}{ll}{PA}_{r,a}\cdot \left(1-{ta}_{r,a}\right)\cdot {QA}_{r,a}=\kern-0.7em & {\mathit{\mathrm{PVAE}}}_{r,a}\cdot {\mathit{\mathrm{QVAE}}}_{r,a}+{\mathit{\mathrm{PINTA}}}_{r,a}\cdot {\mathit{\mathrm{QINTA}}}_{r,a}\hfill \\ {}& +{\mathit{\mathrm{PRES}}}_{r,a}\cdot {\mathit{\mathrm{QRES}}}_{r,a}+{\mathit{\mathrm{GHGCA}}\_\mathit{\mathrm{NENE}}}_{r,a}\hfill \\ {}& +{\mathit{\mathrm{VRENCAP}}}_{r,a}\cdot {QA}_{r,a}+\sum_{\mathit{\mathrm{emcm}}\in \mathit{\mathrm{EMCM}}}{\mathit{\mathrm{QRED}}}_{r,\mathit{\mathrm{emcm}},a},\hfill \\ {}& \forall r\in R,a\in \mathit{\mathrm{ACES}}\hfill \end{array} $$
  • Activity revenue and costs (energy transformation sector):

$$ \begin{array}{ll}{PA}_{r,a}\cdot \left(1-{ta}_{r,a}\right)\cdot {QA}_{r,a}=\kern-0.8em & {PVA}_{r,a}\cdot {QVA}_{r,a}+{\mathit{\mathrm{PINTA}}}_{r,a}\cdot {\mathit{\mathrm{QINTA}}}_{r,a}\hfill \\ {}& +{\mathit{\mathrm{PENE}}}_{r,a}\cdot {\mathit{\mathrm{QENE}}}_{r,a}+{\mathit{\mathrm{PRES}}}_{r,a}\cdot {\mathit{\mathrm{QRES}}}_{r,a}\hfill \\ {}& +{\mathit{\mathrm{GHGCA}}\_\mathit{\mathrm{NENE}}}_{r,a}\hfill \\ {}& +{\mathit{\mathrm{VRENCAP}}}_{r,a}\cdot {QA}_{r,a}\sum_{\mathit{\mathrm{emcm}}\in \mathit{\mathrm{EMCM}}}{\mathit{\mathrm{QRED}}}_{r,\mathit{\mathrm{emcm}},a},\hfill \\ {}& \forall r\in R,a\in \mathit{\mathrm{ALEO}}\hfill \end{array} $$
  • Resource input price:

$$ {pres\_ base}_{r, a}={PRES}_{r, a},\kern2em \forall r\in R, a\in A $$
  • Consumer price index:

$$ \begin{array}{ll}\hfill & \kern-0.8em {CPI}_r=\sum_{c\in C}\left({PQD}_{r,c}\cdot {\mathit{\mathrm{dfpq}}}_{r,c,"\mathit{\mathrm{hurb}}"}\cdot \left(1+{tqd}_{r,c,"\mathit{\mathrm{hurb}}"}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_{r,g}\cdot {\mathit{\mathrm{efffc}}}_{r,c,"\mathit{\mathrm{hurb}}",g}\right)\cdot {\mathit{\mathrm{cwts}}}_{r,c}\\ {}& \kern2.6em \forall r\in R,\forall g\in G\hfill \end{array} $$
  • Producer price index for nontraded market output:

$$ {DPI}_r=\sum_{c\in C}{PDS}_{r, c}\cdot {dwts}_{r, c}\kern2em \forall r\in R $$
  • Export price index:

$$ {EPI}_r=\sum_{c\in C}{PE}_{r, c}\cdot {ewts}_{r, c}\kern1.5em \forall r\in R $$
  • Import price index:

$$ {MPI}_r=\sum_{c\in C}{PM}_{r, c}\cdot {mwts}_{r, c}\kern1.5em \forall r\in R $$
  • Governmental consumption price index:

$$ {GPI}_r=\sum_{c\in C}{PQD}_{r, c}\cdot {dfpq}_{r, c," gov"}\cdot \left(1+{tqd}_{r, c," gov"}\right)\cdot {gwts}_{r, c}\kern1.5em \forall r\in R $$
  • Capital formation price index:

$$ {IPI}_r=\sum_{c\in C}{PQD}_{r, c}\cdot {dfpq}_{r, c," S- I"}\cdot \left(1+{tqd}_{r, c," S- I"}\right)\cdot {iwts}_{r, c}\kern1.5em \forall r\in R $$
  • Leontief technology: demand for aggregate value added (energy transformation sector)

$$ {QVA}_{r, a}={iva}_{r, a}\cdot {QA}_{r, a},\kern2em \forall r\in R, a\in ALEO $$
  • Leontief technology: demand for aggregate energy input (energy transformation sector)

$$ {QENE}_{r, a}={iena}_{r, a}\cdot {QA}_{r, a},\kern2em \forall r\in R, a\in ALEO $$
  • Energy and value-added bundle (nonenergy transformation sector):

$$ {QVAE}_{r, a}={ivae}_{r, a}\cdot {QA}_{r, a},\kern2em \forall r\in R, a\in ACES $$
  • Leontief technology: demand for aggregate nonenergy intermediate input

$$ {QINTA}_{r, a}={inta}_{r, a}\cdot {QA}_{r, a},\kern2em \forall r\in R, a\in A $$
  • Leontief technology: demand for resource input:

$$ {QRES}_{r, a}={ires}_{r, a}\cdot {QA}_{r, a},\kern2em \forall r\in R, a\in A $$
  • Energy and value-added composite:

$$ \begin{array}{ll}{ QVA E}_{r, a}=& {\alpha}_{r, a}^{vae}\cdot {\left({\delta}_{r, a}^{vae}\cdot {QVA_{r, a}}^{-{\rho}_{r, a}^{vae}}+\left(1-{\delta}_{r, a}^{vae}\right)\cdot {QENE_{r, a}}^{-{\rho}_{r, a}^{vae}}\right)}^{-\frac{1}{\rho_{r, a}^{vae}}},\kern1.5em \forall r\in R,\hfill \\ {}& a\in ACES\hfill \end{array} $$
  • Energy and value-added input CES technology: energy – value-added input ratio

$$ {QVA}_{r, a}={QENE}_{r, a}\cdot {\left(\frac{\delta_{r, a}^{vae}}{1-{\delta}_{r, a}^{vae}}\cdot \frac{PENE_{r, a}}{PVA_{r, a}}\right)}^{\frac{1}{1+{\rho}_{r, a}^{vae}}},\kern2em \forall r\in R, a\in ACES $$
  • Energy and value-added composite balance:

$$ { QVA E}_{r, a}\cdot {PVA E}_{r, a}={QENE}_{r, a}\cdot {PENE}_{r, a}+{QVA}_{r, a}\cdot {PVA}_{r, a},\kern1.5em \forall r\in R, a\in ACES $$
  • Energy and value-added composite (nonenergy use sector):

$$ { QVA E}_{r, a}={QVA}_{r, a},\kern1.5em \forall r\in R, a\in ACES $$
  • Value-added and factor demands: non-power supply activities

$$ {QVA}_{r, a}={\alpha}_{r, a}^{va}\cdot {\left(\sum_{f\in F}{\delta}_{r, a}^{va}\cdot {\left({ f cmult}_{r, f, a}\cdot {QF}_{r, f, a}\right)}^{-{\rho}_{r, a}^{va}}\right)}^{-\frac{1}{\rho_{r, a}^{va}}},\kern1.5em \forall r\in R, a\in A $$
  • Value-added and factor demands: power supply activities

$$ {PVA}_{r, a}\cdot \left(1-{tva}_{r, a}\right)\cdot {QVA}_{r, a}=\sum_{f\in F}{WF}_{r, f}\cdot { WF DIST}_{r, f, a},\kern1em \forall r\in R, a\in A $$
  • Factor demand: non-power supply activities

$$ \begin{array}{ll}{WF}_{r,f}\cdot {\mathit{\mathrm{WFDIST}}}_{r,f,a}=& {PVA}_{r,a}\cdot \left(1-{tva}_{r,a}\right)\cdot {QVA}_{r,a}\cdot \hfill \\ {}& \kern-8.8em {\left(\sum_{f\in F\hbox{'}}{\delta}_{r,a}^{va}\cdot {\left({\mathit{\mathrm{fcmult}}}_{r,f,a}\cdot {QF}_{f\ r,a}\right)}^{-{\rho}_{r,a}^{va}}\right)}^{-1}\kern-0.8em \cdot {\delta}_{r,a}^{va}\cdot {{\mathit{\mathrm{fcmult}}}_{r,f,a}}^{-{\rho}_{r,a}^{va}}\cdot {QF_{r,f,a}}^{-{\rho}_{r,a}^{va}-1},\hfill \\ {}& \kern-8.5em \forall r\in R,a\in A,f\in F\hfill \end{array} $$
  • Factor demand: power supply activities

$$ {QF}_{r, f, a}={ivfa}_{r, f, a}\cdot {QVA}_{r, a},\kern1em \forall r\in R, a\in A, f\in F $$
  • Factor cost: power supply activities

$$ \sum_f{WF}_{r, f}\cdot { WF DIST}_{r, f, a}\cdot {QF}_{r, f, a}={PVA}_{r, a}\cdot \left(1-{tva}_{r, a}\right)\cdot {QVA}_{r, a},\kern1em \forall r\in R, a\in A $$
  • Capital aggregation: perfect substitution

$$ {QF}_{r," ccap", a}={QF}_{r," ncap", a}+{QF}_{r," cap", a}\cdot {COPR}_{r, a},\kern1em \forall r\in R, a\in A $$
  • Capital aggregation: new industry

$$ {QF}_{r," ccap", a}={QF}_{r," ncap", a},\kern2em \forall r\in R, a\in A $$
  • Capital aggregation: base year

$$ {QF}_{r," ccap", a}={QF}_{r," cap", a},\kern1em \forall r\in R, a\in A $$
  • Capital cost balance:

$$ \begin{array}{ll}{QF}_{r, f, a}\cdot {WF}_{r, f}\cdot {WF DIST}_{r, f, a}=\kern-0.8em & {QF}_{r," ncap", a}\cdot {WF}_{r," ncap"}\cdot {WF DIST}_{r," ncap", a}\hfill \\ {}& +{QF}_{r," cap", a}\cdot {COPR}_{r, a}\cdot {WF}_{r," cap"}\cdot {WF DIST}_{r," cap", a},\hfill \\ {}& \forall r\in R, a\in A, f\in FCCAP\hfill \end{array} $$
  • Capital rate of return for new and old:

$$ \begin{array}{l}{WF}_{r," ncap"}\cdot {WF DIST}_{r," ncap", a}\ge {WF}_{r," cap"}\cdot {WF DIST}_{r," cap", a}\perp {QF}_{r," ncap", a}\ge 0,\\ {}\kern1em \forall r\in R, a\in A\end{array} $$
  • Capital operation ratio

$$ {COPR}_{r, a}={\left(\frac{WF_{r," cap"}\cdot { WF DIST}_{r," cap", a}}{WF_{r," ncap"}\cdot { WF DIST}_{r," ncap", a}}\right)}^{\varsigma_{r, a}},\kern1em \forall r\in R, a\in A $$
  • Disaggregated intermediate input demand:

$$ {QINT}_{r, c, a}\cdot \frac{faceff_{r, c, a," old"}\cdot {QF}_{r," CAP", a}+{faceff}_{r, c, a," new"}\cdot {QF}_{r," NCAP", a}}{QF_{r," CAP", a}+{QF}_{r," NCAP", a}}={ica}_{r, c, a}\cdot {QINT A}_{r, a},\kern2em \forall r\in R, a\in A, c\in CNEN $$
  • CCS service intermediate input demand:

$$ {QINT}_{r, c, a}=\sum_{emcm\in C CSMAP}{QRED}_{r, emcm, a},\kern1em \forall r\in R, a\in A, c\in C\_ CCS $$
  • Reduction measures (for nonenergy-related GHG emissions):

$$ \begin{array}{c}{QRED}_{r, emcm, a}={\xi}_{emcm, a}^{\max}\cdot {\eta}_{emcm, a}\cdot \sum_{g\in G}{ g wp}_g\cdot {EMALI}_{r, a, g},\\ {}\kern3.7em \forall r\in R, a\in A, emcm\in EMCM0\end{array} $$
  • Reduction measures (for energy-related GHG emissions):

$$ \begin{array}{ll}{QRED}_{r, emcm, a}=\kern-0.8em & {\xi}_{emcm, a}^{\max}\cdot {\eta}_{emcm, a}\cdot \sum_{c\in ENE}\sum_{g\in G}{ g wp}_g\cdot {QINT}_{r, c, a}\cdot {enur}_{r, c, a}\cdot {efffc}_{r, c, a, g},\hfill \\ {}& \forall r\in R, a\in A, emcm\in EMCM1\hfill \end{array} $$
  • Reduction measures (for biomass power plant GHG absorption):

$$ \begin{array}{l}{QRED}_{r, emcm, a}={\xi}_{emcm, a}^{\max}\cdot {\eta}_{emcm, a}\cdot \sum_{g\in G}{ g wp}_g\cdot {EMBII}_{r, a, g},\\ {}\kern7em \forall r\in R, a\in A, emcm\in EMCM2\end{array} $$
  • CCS-equipped share:

$$ {\mathit{\mathrm{TSCT}}}_{r,a, tc}={\alpha}_{a, tc}^{\mathit{\mathrm{tech}}}\cdot {{\mathit{\mathrm{PGHG}}}_r}^{\beta_{r,a, tc}}\cdot {\left(\sum_{tc\in TC}{\alpha}_{a, tc}^{\mathit{\mathrm{tech}}}\cdot {{\mathit{\mathrm{PGHG}}}_r}^{\beta_{r,a, tc}^{\mathit{\mathrm{tech}}}}\right)}^{-1},\kern1em \forall r\in R,a\in A, tc\in TC $$
  • Energy input technology share:

$$ \begin{array}{ll}{\mathit{\mathrm{QINT}}}_{r,c,a}=\kern-0.8em & {\mathit{\mathrm{QENE}}}_{r,a}\cdot \hfill \\ {}& \kern-4.5em \frac{\beta_{r,c,a}^{\mathit{\mathrm{inden}}}\cdot {\left\{{PQD}_{r,c}\cdot \left(1+{tqd}_{r,c,a}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r,c,a}\cdot {\mathit{\mathrm{efffc}}}_{r,c,a,g}\right\}}^{el_{r,c,a}^{\mathit{\mathrm{inden}}}}}{\sum_{cp\in ENE}{\beta}_{r, cp,a}^{\mathit{\mathrm{inden}}}\cdot {\left\{{PQD}_{r, cp}\cdot \left(1+{tqd}_{r, cp,a}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r, cp,a}\cdot {\mathit{\mathrm{efffc}}}_{r, cp,a,g}\right\}}^{el_{r, cp,a}^{\mathit{\mathrm{inden}}}}},\hfill \\ {}& \kern-4.5em \forall r\in R,c\in ENE,a\in A\hfill \end{array} $$
  • Energy input costs:

$$ \begin{array}{ll}\hfill & \kern-1.5em {\mathit{\mathrm{PENE}}}_{r,a}\cdot {\mathit{\mathrm{QENE}}}_{r,a}\\ {}& =\sum_{c\in C\_ ENE}\left\{{PQD}_{r,c,a}\cdot \left(1+{tqd}_{r,c,a}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r,c,a}\cdot {\mathit{\mathrm{efffc}}}_{r,c,a,g}\right\}\cdot \hfill \\ {}& {\mathit{\mathrm{QINT}}}_{r,c,a},\hfill \\ {}& \kern0em \forall r\in R,a\in A\hfill \end{array} $$
  • Energy consumption of energy transformation sector:

$$ {QINT}_{r, c, a}={QENE}_{r, a}\cdot {iene}_{r, c, a},\kern2em \forall r\in R, a\in ALEO\_ ENE, c\in ENE $$
  • Freight transport generated by industrial activity:

$$ {QDTRS}_{r, tr, a}={QINT}_{r," COM\_ TRS", a}\cdot {trscvf}_{r, tr, a},\kern2em \forall r\in R, a\in A, tr\in TR\_ FRT\kern1em $$
  • Freight transport generated by household consumption:

$$ {QDTRS}_{r, tr, h}={QH}_{r," COM\_ TRS", h}\cdot {trscvf}_{r, tr, h},\kern2em \forall r\in R, h\in H, tr\in TR\_ FRT\kern1em $$
  • Total freight transport:

$$ { QDTRS T}_{r, tr}=\sum_{ac\in AC}{QDTRS}_{r, tr, ac},\kern2em \forall r\in R, tr\in TR\_ FRT\kern1em $$
  • Passenger transport (excluding household passenger car):

$$ {QDTRST}_{r, tr}={trspss\_ base}_{r, tr}\cdot {\left(\frac{GDP_r}{{GDP\_ base}_r}\right)}^{el_{r, tr}^{pssincome}},\kern1em \forall r\in R, tr\in TR\_ PSS\kern1em $$
  • Transport energy demand:

$$ {TRS\_ ENE}_{r, tr}={QDTRST}_{r, tr}\cdot {trseneeffi}_{r, tr}\cdot {\left(\frac{{PENE\_ TR}_{r, tr}}{{pene\_ tr\_ base}_{r, tr}}\right)}^{el_{r, tr}^{trspr}},\kern1em \forall r\in R, a\in A, tr\in TR $$
  • Transport energy price by mode:

$$ \begin{array}{ll}\hfill & \kern-1em {\mathit{\mathrm{PENE}}\_ TR}_{r, tr}\\ {}& =\frac{\sum_{c\in C}{TRS\_ ENE\_ FL}_{r, tr,c}\cdot \left\{{PQD}_{r,c}\cdot \left(1+{tqd}_{r,c," TRS"}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r,c," trs"}\cdot {\mathit{\mathrm{efffc}}}_{r,c," trs",g}\right\}}{\sum_c{TRS\_ ENE\_ FL}_{r, tr,c}},\hfill \\ {}& \kern1em \forall r\in R,a\in A, tr\in TR\hfill \end{array} $$
  • Transport energy source:

$$ \begin{array}{ll}{TRS\_ ENE\_ FL}_{r,c, tr}=& {TRS\_ ENE}_{r, tr}\cdot \hfill \\ {}& \kern-7.9em \frac{\beta_{r,c, tr}^{\mathit{\mathrm{trsen}}}\cdot {\left\{{PQD}_{r,c}\cdot \left(1+{tqd}_{r,c," TRS"}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r,c," trs"}\cdot {\mathit{\mathrm{efffc}}}_{r,c," trs",g}\right\}}^{el_{r,c, tr}^{\mathit{\mathrm{trsen}}}}}{\sum_{cp\in ENE}{\beta}_{r, cp, tr}^{\mathit{\mathrm{trsen}}}\cdot {\left\{{PQD}_{r, cp}\cdot \left(1+{tqd}_{r, cp," TRS"}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r, cp," trs"}\cdot {\mathit{\mathrm{efffc}}}_{r, cp," trs",g}\right\}}^{el_{r, cp, tr}^{\mathit{\mathrm{trsen}}}}},\hfill \\ {}& \kern-7.8em \forall r\in R,c\in ENE, tr\in TR\kern1em \hfill \end{array} $$
  • Transport total energy consumption:

$$ {QENE}_{r, a}=\sum_{tr\in TR}{TRS\_ ENE}_{r, tr},\kern1em \forall r\in R, a\in A\_ TRS $$
  • Transport total energy consumption by fuel:

$$ {QINT}_{r, c, a}=\sum_{tr\in TR}{TRS\_ ENE\_ FL}_{r, c, tr},\kern1em \forall r\in R, c\in ENE, a\in A\_ TRS $$
  • Commodity production and allocation:

$$ {QXAC}_{r, a, c}={\theta}_{r, a, c}\cdot {QA}_{r, a},\kern1em \forall r\in R, a\in A, c\in CX $$
  • Commodity production and allocation (nonenergy commodities):

$$ {QX}_{r, c}={\alpha}_{r, c}^{a c}\cdot {\left(\sum_{a\in A}{\delta}_{r, a, c}^{a c}\cdot {{ QX AC}_{r, a, c}}^{-{\rho}_{r, c}^{a c}}\right)}^{-\frac{1}{\rho_{r, c}^{a c}}},\kern1em \forall r\in R, c\in \left( CX- ENE\right) $$
  • First-order condition for output aggregation function (nonenergy commodities):

$$ \begin{array}{l}{\mathit{\mathrm{PXAC}}}_{r,a,c}={PX}_{r,c}\cdot {QX}_{r,c}\cdot {\left(\sum_{ap\in A}{\delta}_{r, ap,c}^{ac}\cdot {{\mathit{\mathrm{QXAC}}}_{r, ap,c}}^{-{\rho}_{r, ap}^{ac}}\right)}^{-1}\cdot {\delta}_{r,a,c}^{ac}\cdot {{\mathit{\mathrm{QXAC}}}_{r,a,c}}^{-{\rho}_{r,a}^{ac}-1},\\ {}\kern5.5em \forall r\in R,a\in A,c\in \left( CX- ENE\right)\end{array} $$
  • Single sector commodity source:

$$ { PX AC}_{r, a, c}={PX}_{r, c},\kern1em \forall r\in R, a\in A, c\in \left( CX- ENE\right) $$
  • Perfect substitution commodity sources:

$$ \sum_{a\in A}{ QX AC}_{r, a, c}={QX}_{r, c},\kern1em \forall r\in R, a\in A $$
  • Share of commodity production and allocation (energy commodities):

$$ {SHAC}_{r, a, c}=\frac{\psi_{r, a, c}^{ac}{PXAC_{r, a, c}}^{\eta_{r, a, c}^{ac}}}{\sum_{ap\in A}{\psi}_{r, a p, c}^{ac}{PXAC_{r, a p, c}}^{\eta_{r, a p, c}^{ac}}},\kern1em \forall r\in R, c\in \left( CX\cap ENE\right) $$
  • Commodity production and allocation (energy commodities):

$$ { QX AC}_{r, a, c}={QX}_{r, c}\cdot {SHAC}_{r, a, c},\kern2em \forall r\in R, a\in A, c\in \left( CX\cap ENE\right) $$
  • Balance of the output and commodity aggregate (energy commodities):

$$ \sum_{a\in A}{ QX AC}_{r, a, c}\cdot { PX AC}_{r, a, c}={QX}_{r, c}{PX}_{r, c},\kern2em \forall r\in R, c\in \left( CX\cap ENE\right) $$
  • Output transformation (CET) function (nonenergy commodities):

$$ \begin{array}{ll} QX{2}_{r,c}=\kern-0.7em & {\alpha}_{r,c}^t\cdot {\left({\delta}_{r,c}^t\cdot \mathit{\mathrm{DELTA}}\_ AD{2}_{r,c}\cdot {QE_{r,c}}^{\rho_{r,c}^t}+\left(1-{\delta}_{r,c}^t\cdot \mathit{\mathrm{DELTA}}\_ AD{2}_{r,c}\right)\cdot {QD_{r,c}}^{\rho_{r,c}^t}\right)}^{\frac{1}{\rho_{r,c}^t}},\hfill \\ {}& \forall r\in R,c\in \left( CE\cap CD- ENE\right)\hfill \end{array} $$
  • Export constraint:

$$ {qe\_ up}_{r, c}\ge {QE}_{r, c}\perp DELTA\_ AD{2}_{r, c}\ge 1,\kern1em \forall r\in R, c\in C\left\{ qe\_{up}_{r, c}\ge 0\right\} $$
  • Export-domestic supply ratio (nonenergy commodities):

$$ \begin{array}{l}\frac{QE_{r,c}}{QD_{r,c}}={\left(\frac{PE_{r,c}}{PDS_{r,c}}\cdot \frac{1-{\delta}_{r,c}^t\cdot \mathit{\mathrm{DELTA}}\_ AD{2}_{r,c}}{\delta_{r,c}^t\cdot \mathit{\mathrm{DELTA}}\_ AD{2}_{r,c}}\right)}^{\frac{1}{\rho_{r,c}^t-1}},\kern2em \forall r\in R,c\in \left( CE\cap CD- ENE\right)\end{array} $$
  • Output transformation for domestically sold outputs without exports and for exports without domestic sales:

$$ QX{2}_{r, c}={QD}_{r, c}+{QE}_{r, c},\kern2em \forall r\in R, c\in \left( CE\cap CEN\right)\cup \left( CD\cap CDN\right) $$
  • Share of the domestically sold and export (energy commodities):

$$ {SHQE}_{r, c}=\frac{\psi_{r, c}^t{PE_{r, c}}^{\eta_{r, c}^t}}{\psi_{r, c}^t{PE_{r, c}}^{\eta_{r, c}^t}+{\psi_2}_{r, c}^t{PDS_{r, c}}^{\eta_{r, c}^t}},\kern2em \forall r\in R, c\in \left( CE\cap CD\cap ENE\right) $$
  • Exported energy commodities:

$$ {QE}_{r, c}= QX{2}_{r, c}\cdot {SHQE}_{r, c},\kern2em \forall r\in R, c\in \left( CE\cap CD\cap ENE\right) $$
  • Domestically sold energy commodities:

$$ {QD}_{r, c}= QX{2}_{r, c}\cdot \left(1-{SHQE}_{r, c}\right),\kern2em \forall r\in R, c\in \left( CE\cap CD\cap ENE\right) $$
  • Composite supply (Armington) function (nonenergy commodities):

$$ \begin{array}{ll}{QQ}_{r,c}=\kern-0.8em & {\alpha}_{r,c}^q\cdot {\left({\delta}_{r,c}^q\cdot {QM_{r,c}}^{-{\rho}_{r,c}^q}+\left(1-{\delta}_{r,c}^q\right)\cdot {QD_{r,c}}^{-{\rho}_{r,c}^q}\right)}^{-\frac{1}{\rho_{r,c}^q}},\hfill \\ {}& \kern0em \forall r\in R,c\in \left( CM\cap CD- ENE\right)\hfill \end{array} $$
  • Import-domestic demand ratio (nonenergy commodities):

$$ \frac{QM_{r, c}}{QD_{r, c}}={\left(\frac{PDD_{r, c}}{PM_{r, c}}\cdot \frac{\delta_{r, c}^q}{1-{\delta}_{r, c}^q}\right)}^{\frac{1}{\rho_{r, c}^q+1}},\kern2em \forall r\in R, c\in \left( CM\cap CD- ENE\right) $$
  • Composite supply for nonimported outputs and non-produced imports:

$$ {QQ}_{r, c}={QD}_{r, c}+{QM}_{r, c},\kern2em \forall r\in R, c\in \left( CD\cap CMN\right)\cup \left( CM\cap CDN\right) $$
  • Share of the domestically sold and imported (energy commodities):

$$ {SHQM}_{r, c}=\frac{\psi_{r, c}^m{PM_{r, c}}^{\eta_{r, c}^m}}{\psi_{r, c}^m{PM_{r, c}}^{\eta_{r, c}^m}+{\psi_2}_{r, c}^m{PDD_{r, c}}^{\eta_{r, c}^m}},\kern2em \forall r\in R, c\in \left( CM\cap CD\cap ENE\right) $$
  • Imported energy commodities:

$$ {QM}_{r, c}={QQ}_{r, c}\cdot {SHQM}_{r, c},\kern2em \forall r\in R, c\in \left( CM\cap CD\cap ENE\right) $$
  • Domestically sold energy commodities:

$$ {QD}_{r, c}={QQ}_{r, c}\cdot \left(1-{SHQM}_{r, c}\right),\kern2em \forall r\in R, c\in \left( CM\cap CD\cap ENE\right) $$
  • Land input of activity:

$$ {QF}_{r, f, a}={landeff}_{r, f, a}\cdot {QA}_{r, a},\kern2em \forall r\in R, f\in FLND, a\in A $$
  • AEZ aggregation for activity a:

$$ {QF}_{r,f,a}\cdot {WF}_{r,f}\cdot {\mathit{\mathrm{WFDIST}}}_{r,f,a}=\sum_{fl\in FL}{\mathit{\mathrm{PLAND}}}_{r, fl,a}\cdot {\mathit{\mathrm{QLAND}}}_{r, fl,a},\kern2em \forall r\in R,f\in \mathit{\mathrm{FLND}},a\in A $$
  • AEZ selection for activity a:

$$ {QLAND}_{r, fl, a}={QF}_{r," lnd", a}\cdot \frac{\delta_{r, fl, a}^{ls}\cdot {PLAND_{r, fl, a}}^{\rho_{r, a}^{ls}}}{\sum_{flp\in FL}{\delta}_{r, fl p, a}^{ls}\cdot {PLAND_{r, fl p, a}}^{\rho_{r, a}^{ls}}},\kern2em \forall r\in R, fl\in FL, a\in A $$
  • Crop land price:

$$ {QCROP}_{r, fl}\cdot {PCROP}_{r, fl}=\sum_{a\in AAGR}{PLAND}_{r, fl, a}\cdot {QLAND}_{r, fl, a},\kern2em \forall r\in R, fl\in FL $$
  • AEZ land crop selection:

$$ {\mathit{\mathrm{QLAND}}}_{r, fl,a}={\mathit{\mathrm{QCROP}}}_{r, fl}\cdot \frac{\delta_{r, fl,a}^{ltc}\cdot {{\mathit{\mathrm{PLAND}}}_{r, fl,a}}^{\rho_{r, fl}^{ltc}}}{\sum_{ap\in \mathit{\mathrm{AAGR}}}{\delta}_{r, fl, ap}^{ltc}\cdot {{\mathit{\mathrm{PLAND}}}_{r, fl, ap}}^{\rho_{r, fl}^{ltc}}},\kern2em \forall r\in R, fl\in FL,a\in \mathit{\mathrm{AAGR}} $$
  • Grazing land price:

$$ {QGRZ}_{r, fl}\cdot {PGRZ}_{r, fl}=\sum_{a\in ALIV}{PLAND}_{r, fl, a}\cdot {QLAND}_{r, fl, a},\kern2em \forall r\in R, fl\in FL $$
  • AEZ land grazing selection:

$$ {\mathit{\mathrm{QLAND}}}_{r, fl,a}={\mathit{\mathrm{QGRZ}}}_{r, fl}\cdot \frac{\delta_{r, fl,a}^{ltc}\cdot {{\mathit{\mathrm{PLAND}}}_{r, fl,a}}^{\rho_{r, fl}^{ltc}}}{\sum_{ap\in \mathit{\mathrm{ALIV}}}{\delta}_{r, fl, ap}^{ltc}\cdot {{\mathit{\mathrm{PLAND}}}_{r, fl, ap}}^{\rho_{r, fl}^{ltc}}},\kern1.5em \forall r\in R, fl\in FL,a\in \mathit{\mathrm{ALIV}} $$
  • Crop and grazing selection for AEZ (crop):

$$ \begin{array}{l}{\mathit{\mathrm{QCROP}}}_{r, fl}={\mathit{\mathrm{QAGRT}}}_{r, fl}\cdot \frac{\delta_{r, fl,"\mathit{\mathrm{CROP}}"}^{ltt}\cdot {{\mathit{\mathrm{PCROP}}}_{r, fl}}^{\rho_{r, fl}^{ltt}}}{\delta_{r, fl,"\mathit{\mathrm{CROP}}"}^{ltt}\cdot {{\mathit{\mathrm{PCROP}}}_{r, fl}}^{\rho_{r, fl}^{ltt}}+{\delta}_{r, fl," GRZ"}^{ltt}\cdot {{\mathit{\mathrm{PGRZ}}}_{r, fl}}^{\rho_{r, fl}^{ltt}}},\\ {}\kern5.7em \forall r\in R, fl\in FL\end{array} $$
  • Crop and grazing selection for AEZ (grazing):

$$ \begin{array}{l}{\mathit{\mathrm{QGRZ}}}_{r, fl}={\mathit{\mathrm{QAGRT}}}_{r, fl}\cdot \frac{\delta_{r, fl," GRZ"}^{ltt}\cdot {{\mathit{\mathrm{PGRZ}}}_{r, fl}}^{\rho_{r, fl}^{ltt}}}{\delta_{r, fl,"\mathit{\mathrm{CROP}}"}^{ltt}\cdot {{\mathit{\mathrm{PCROP}}}_{r, fl}}^{\rho_{r, fl}^{ltt}}+{\delta}_{r, fl," GRZ"}^{ltt}\cdot {{\mathit{\mathrm{PGRZ}}}_{r, fl}}^{\rho_{r, fl}^{ltt}}},\\ {}\kern5.1em \forall r\in R, fl\in FL\end{array} $$
  • Aggregation of agriculture (in case missing either crop or graze):

$$ {QAGRT}_{r, fl}={QCROP}_{r, fl}+{QGRZ}_{r, fl},\kern2em \forall r\in R, fl\in FL $$
  • Aggregated agricultural price:

$$ {\mathit{\mathrm{QAGR}}}_{r, fl}\cdot {\mathit{\mathrm{PAGRT}}}_{r, fl}={\mathit{\mathrm{QCROP}}}_{r, fl}\cdot {\mathit{\mathrm{PCROP}}}_{r, fl}+{\mathit{\mathrm{QGRZ}}}_{r, fl}\cdot {\mathit{\mathrm{PGRZ}}}_{r, fl},\kern2em \forall r\in R, fl\in FL $$
  • Agriculture and forestry selection for AEZ (agriculture):

$$ \begin{array}{l}{\mathit{\mathrm{QAGRT}}}_{r, fl}={\mathit{\mathrm{QLANT}}}_{r, fl}\cdot \frac{\delta_{r, fl," AGR"}^{ltf}\cdot {{\mathit{\mathrm{PAGRT}}}_{r, fl}}^{\rho_{r, fl}^{ltf}}}{\delta_{r, fl," AGR"}^{ltf}\cdot {{\mathit{\mathrm{PAGRT}}}_{r, fl}}^{\rho_{r, fl}^{ltf}}+{\delta}_{r, fl," FRS"}^{ltf}\cdot {{\mathit{\mathrm{PLAND}}}_{r, fl," FRS"}}^{\rho_{r, fl}^{ltf}}},\\ {}\kern5.8em \forall r\in R, fl\in FL\end{array} $$
  • Agriculture and forestry selection for AEZ (forestry):

$$ \begin{array}{l}{\mathit{\mathrm{QLAND}}}_{r, fl,a}={\mathit{\mathrm{QLAND}\mathrm{T}}}_{r, fl}\cdot \frac{\delta_{r,\kern0.05em fl," AGR"}^{ltf}\cdot {{\mathit{\mathrm{PLAND}}}_{r,\kern0.05em fl," FRS"}}^{\rho_{r,\kern0.05em fl}^{ltf}}}{\delta_{r,\kern0.05em fl," AGR"}^{ltf}\cdot {{\mathit{\mathrm{PAGRT}}}_{r, fl}}^{\rho_{r,\kern0.05em fl}^{ltf}}+{\delta}_{r,\kern0.05em fl," FRS"}^{ltf}\cdot {{\mathit{\mathrm{PLAND}}}_{r,\kern0.05em fl," FRS"}}^{\rho_{r,\kern0.05em fl}^{ltf}}},\\ {}\kern6.3em \forall r\in R, fl\in FL,A\in \mathit{\mathrm{AFRS}}\end{array} $$
  • Aggregation of agriculture (in case missing agriculture):

$$ { QLAND T}_{r, fl}={QLAND}_{r, fl," FRS"},\kern2em \forall r\in R, fl\in FL $$
  • Aggregation of agriculture (in case missing forestry):

$$ {QLANDT}_{r, fl}={QAGRT}_{r, fl},\kern2em \forall r\in R, fl\in FL $$
  • Aggregated total land price:

$$ \begin{array}{l}{\mathit{\mathrm{QLAND}\mathrm{T}}}_{r, fl}\cdot {\mathit{\mathrm{PLAND}\mathrm{T}}}_{r, fl}={\mathit{\mathrm{QAGRT}}}_{r, fl}\cdot {\mathit{\mathrm{PAGRT}}}_{r, fl}+{\mathit{\mathrm{QLAND}}}_{r, fl," FRS"}\cdot {\mathit{\mathrm{PLAND}}}_{r, fl," FRS"},\\ {}\kern11.5em \forall r\in R, fl\in FL\end{array} $$
  • Total land:

$$ \begin{array}{l}{\mathit{\mathrm{QLANDT}}}_{r, fl}={\mathit{\mathrm{qlandtotara}}}_{r, fl}\cdot \frac{\delta_{r, fl," USE"}^{ara}\cdot {{\mathit{\mathrm{PLANDT}}}_{r, fl}}^{\rho_{r, fl}^{ara}}}{\delta_{r, fl," USE"}^{ara}\cdot {{\mathit{\mathrm{PLANDT}}}_{r, fl}}^{\rho_{r, fl}^{ara}}+{\delta}_{r,\kern0.07em fl," NUS"}^{ara}\cdot \mathit{\mathrm{plandt}}\_{ini_{r, fl}}^{\rho_{r, fl}^{ara}}},\\ {}\kern6.2em \forall r\in R, fl\in FL\end{array} $$
  • Positive land-use change emissions:

$$ \begin{array}{ll}\mathit{\mathrm{LUCHEM}}\_{P}_{r, fl}=& \max \left[0,\left({\mathit{\mathrm{qfrspre}}}_{r, fl}-{\mathit{\mathrm{QPRMLANDT}}}_{r, fl," frs"}\right)\cdot {\mathit{\mathrm{ecoefluc}}}_{r, fl," frs"}\right],\hfill \\ {}& \kern2em \forall r\in R, fl\in FL\hfill \end{array} $$
(EQ_LUCHEM_P)
  • Negative land use-change emissions:

$$ \begin{array}{l}{\mathit{\mathrm{prluch}}}_{y,r, fl}\cdot cf\_v2t\cdot \mathit{\mathrm{cdst}}\_ wd\cdot 11/3\cdot \\ {}\mathit{\mathrm{LUCHEM}}\_{N}_{r, fl}=-\sum_{y\in \mathit{\mathrm{Yold}}}\left[ \exp \left[{\alpha}_{fl}^{bms}-\frac{30}{\left\{\left(\mathit{\mathrm{Pyear}}-\mathit{\mathrm{baseyear}}+1\right)-{\mathit{\mathrm{Year}}}_y\right\}}-\frac{30}{\left\{\left(\mathit{\mathrm{Pyear}}-\mathit{\mathrm{baseyear}}\right)-{\mathit{\mathrm{Year}}}_y\right\}}\right]\right],\hfill \\ {}\kern6.3em \forall r\in R, fl\in FL\hfill \end{array} $$
(EQ_LUCHEM_N)
  • Factor income:

$$ {YF}_{r, f}=\sum_{a\in A}{WF}_{r, f}\cdot { WF DIST}_{r, f, a}\cdot {QF}_{r, f, a}+{transfr\_ f}_{r, f," ROW"}\cdot {EXR}_r,\kern1em \forall r\in R, f\in F $$
  • Institutional factor incomes:

$$ {YIF}_{r,i,f}={\mathit{\mathrm{shif}}}_{r,i,f}\cdot \left(\left(1-{tf}_{r,f}\right)\cdot {YF}_{r,f}-{\mathit{\mathrm{transfr}}}_{r," ROW",f}\cdot {EXR}_r\right),\kern1em \forall r\in R,i\in \mathit{\mathrm{INSD}},f\in F $$
  • Income of nongovernmental domestic institution:

$$ \begin{array}{ll}{YI}_{r,i}=& \sum_{f\in F}{YI F}_{r,i,f}+{\mathit{\mathrm{TRII}}\_\mathit{\mathrm{Resource}}}_{r,i}+{\mathit{\mathrm{shincome}}}_{r,i}\cdot {\mathit{\mathrm{GHGTCOST}}}_r\hfill \\ {}& +{\mathit{\mathrm{VRENCAPTOT}}}_{r,i}-\left(\mathit{\mathrm{PGHG}}\_G+{\mathit{\mathrm{PGHG}}\_ IMP\_ QUO}_r-{\mathit{\mathrm{PGHG}}\_ EXP\_ QUO}_r\right)\kern0.15em \cdot \hfill \\ {}& {GHG\_ IMP}_r{\times EXR}_r\cdot {\mathit{\mathrm{shincome}}}_{r,i}+{\mathit{\mathrm{shres}}}_{r,i}\cdot \sum_{a\in A}{\mathit{\mathrm{PRES}}}_{r,a}\cdot {\mathit{\mathrm{QRES}}}_{r,a}\hfill \\ {}& +{\mathit{\mathrm{shincome}}}_{r,i}\cdot \sum_{a\in A}{\mathit{\mathrm{QENE}}}_{r,a}\cdot {\mathit{\mathrm{PENE}}}_{r,a}\cdot \left(\frac{1}{1-{\mathit{\mathrm{ADEEI}}}_{r,a}}-1\right)\hfill \\ {}& \kern-4em +{\mathit{\mathrm{shincome}}}_{r,i}\cdot \sum_{a\in A}{\mathit{\mathrm{RQUOQA}}}_{r,a}\cdot {QA}_{r,a}\cdot {PA}_{r,a}\kern2em ,\forall r\in R,\hfill \\ {}& i\in \mathit{\mathrm{INSDNG}}\hfill \end{array} $$
  • Total rent of electricity capacity:

$$ { VRENCAP TOT}_{r," ent"}=\sum_{a\in A}{VRENCAP}_{r, a}\kern1.25em \forall r\in R $$
  • Household consumption expenditures:

$$ \begin{array}{ll}{EH}_{r,h}=\kern-0.8em & \left(1-{\mathit{\mathrm{shii}}\_ use}_{r,h}\right)\left(1-{MPS}_{r,h}\right)\cdot \left(1-{\mathit{\mathrm{TINS}}}_{r,h}\right)\cdot {YI}_{r,h}\hfill \\ {}& -{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_{r,g}\cdot \left({\mathit{\mathrm{EMALH}}}_{r,h,g}+{\mathit{\mathrm{EMBIH}}}_{r,h,g}\right)\hfill \\ {}& \forall r\in R,h\in H\hfill \end{array} $$
  • Passenger car by household:

$$ {QCARU}_{r, h}={pcaru}_{r, h}\cdot {\left(\frac{EH_{r, h}/{CPI}_r}{EH\_{base}_{r, h}/ CPI\_{base}_r}\right)}^{pasch_{r, h}},\kern1em \forall r\in R, h\in H $$
  • Energy consumption caused by passenger car in household Footnote 7:

$$ { QCARU ENET}_{r, h}={QCARU}_{r, h}\cdot {careneeff}_{r, h},\kern2em \forall r\in R, h\in H $$
  • Energy price for passenger car in household:

$$ \begin{array}{ll}{\mathit{\mathrm{PENE}}\_H\_ CAR}_{r,h}\cdot {\mathit{\mathrm{QCARENET}}}_{r,h}=& \sum_{c\in C}{\mathit{\mathrm{QCARUENE}}}_{r,h,c}\hfill \\ {}& \kern-14.5em \cdot \left({PQD}_{r,c}\cdot {\mathit{\mathrm{dfpq}}}_{r,c,h}\cdot \left(1+{tqd}_{r,c,h}\right)+\sum_{g\in G}{\mathit{\mathrm{PGHG}}}_r\cdot {gwp}_g\cdot {\mathit{\mathrm{efffc}}}_{r,c,h,g}\right),\hfill \\ {}& \kern-14.3em \forall r\in R,h\in H\hfill \end{array} $$
  • Energy fuel consumption caused by passenger car in household:

$$ \begin{array}{ll}\hfill & \kern-1em {\mathit{\mathrm{QCARUENE}}}_{r,h,c}\\ {}& \kern-1.5em ={\mathit{\mathrm{QCARUENE}\mathrm{T}}}_{r,h}\frac{\beta_{r,c,h}^{\mathit{\mathrm{carh}}}\cdot {\left\{{PQD}_{r,c}\cdot \left(1+{tqd}_{r,c,h}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r,c,h}\cdot {\mathit{\mathrm{efffc}}}_{r,c,h,g}\right\}}^{el_{r,c,h}^{\mathit{\mathrm{carh}}}}}{\sum_{cp}{\beta}_{r, cp,h}^{\mathit{\mathrm{carh}}}\cdot {\left\{{PQD}_{r, cp}\cdot \left(1+{tqd}_{r, cp,h}\right)++{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r, cp,h}\cdot {\mathit{\mathrm{efffc}}}_{r, cp,h,g}\right\}}^{el_{r, cp,h}^{\mathit{\mathrm{carh}}}}},\hfill \\ {}& \forall r\in R,h\in H,c\in ENE\kern1em \hfill \end{array} $$
  • Household consumption spending (LES):

$$ \begin{array}{l}{PQH}_{r, ch}\cdot {QCH}_{r, ch,h}={PQH}_{r, ch}\cdot {\gamma}_{r, ch,h}^m\kern1em +{\beta}_{r, ch,h}^m\cdot \left({EH}_{r,h}-\sum_{c^{\prime}\in C}{PQH}_{r, ch\hbox{'}}\cdot {\gamma}_{r,{c}^{\prime }h,h}^m\right),\\ \kern-25.8em \forall r\in R,c\in C,h\in H\hfill \end{array} $$
  • Household goods price:

$$ \begin{array}{ll}{QCH}_{r, c h, h}\cdot {PQH}_{r, c h, h}=\kern-1em & \sum_{c\in {wch}_{r, c h, c, h}}\kern-0.5em \left({QH}_{r, c, h}-{QCARENE}_{r, c, h}\right)\cdot \hfill \\ {}& \kern-8.5em \left({PQD}_{r, c}\cdot {dfpq}_{r, c, h}\cdot \left(1+{tqd}_{r, c, h}\right)+\sum_{g\in G}{PGHG}_r\cdot { g wp}_g\cdot {efffc}_{r, c, h, g}\right),\hfill \\ {}& \kern-8.3em \forall r\in R, c h\in CH, h\in H\kern0.48em \hfill \end{array} $$
  • Household goods consumption mapping:

$$ {QH}_{r, c, h}=\sum_{ch\in {wch}_{r, c h, c, h}}{QCH}_{r, c h, h},\kern1em \forall r\in R, c\in C, h\in H $$
  • Household energy source consumption:

$$ \begin{array}{ll}{QH}_{r,h,c}=& {\mathit{\mathrm{QCARENE}}}_{r,h,c}\hfill \\ {}& \kern-5.5em +{QCH}_{r," com\_ ene",h}\frac{\beta_{r,c,h}^{\mathit{\mathrm{enec}}}\cdot {\left\{{PQD}_{r,c}\cdot \left(1+{tqd}_{r,c,h}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r,c,h}\cdot {\mathit{\mathrm{efffc}}}_{r,c,h,g}\right\}}^{el_{r,c,h}^{\mathit{\mathrm{enec}}}}}{\sum_{cp}{\beta}_{r, cp,h}^{\mathit{\mathrm{enec}}}\cdot {\left\{\kern-0.05em {PQD}_{r, cp}\cdot \left(1+{tqd}_{r, cp,h}\right)\kern-0.05em ++{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot {\mathit{\mathrm{enur}}}_{r, cp,h}\cdot {\mathit{\mathrm{efffc}}}_{r, cp,h,g},\kern-0.05em \right\}}^{el_{r, cp,h}^{\mathit{\mathrm{enec}}}}},\hfill \\ {}& \kern-5.2em \forall r\in R,h\in H,c\in ENE\kern1em \hfill \end{array} $$
  • Household utility (AIDADS):

$$ {Vu}_{r, c h}=\sum_{ch} V{\mu}_{r, c h, h}\cdot \ln \left(\frac{QCH_{r, c h, c}}{poph_{r, h}}-\theta {h}_{r, c h, h}\right)-\left( \ln A+1\right),\kern1em \forall r\in R, h\in H $$
  • Household marginal share (AIDADS):

$$ V{\mu}_{r, ch, h}=\frac{\left[\alpha {h}_{r, ch, h}+\beta {h}_{r, ch, h}\cdot {e}^{uh_{r, h}}\right]}{\left[1+{e}^{uh_{r, h}}\right]},\kern1em \forall r\in R, ch\in CH, h\in H $$
  • Household consumption spending (AIDADS):

$$ \begin{array}{ll}{QCH}_{r, ch,h}\cdot {PQH}_{r, ch,h}=& \kern-33.5em {\mathit{\mathrm{poph}}}_{r,h}\cdot \hfill \\ {}[\begin{array}{l}\theta {h}_{r, ch,h}\cdot {PQH}_{r, ch,h}+V{\mu}_{r, ch,h}\cdot \\ {}\kern-0.40em \left(\kern-0.40em ,\begin{array}{l}{EH}_h-\sum_{c^{\prime}\in C\_ ENE}\left({PQD}_{r,c\hbox{'}}\cdot {\mathit{\mathrm{dfpq}}}_{r,c\hbox{'},h}\cdot \left(1+{tqd}_{r,c\hbox{'},h}\right)+\sum_{g\in G}{\mathit{\mathrm{PGHG}}}_r\cdot {gwp}_g\cdot {\mathit{\mathrm{efffc}}}_{r,c\hbox{'},h,g}\right)\cdot {\mathit{\mathrm{QCARENE}}}_{r,{c}^{\prime },h}\\ {}-\sum_{chp\in CH}{PQH}_{r, ch p,h}\cdot \theta {h}_{r, ch p,h}\end{array},\kern-0.20em \right)\kern-0.45em \end{array}],\hfill \\ {}\kern1em \forall r\in R, ch\in CH,h\in H\hfill \end{array} $$
  • Investment demand:

$$ {QINV}_{r, c}={IADJ}_r\cdot \overline{qinv_{r, c}},\kern1em \forall r\in R, c\in C $$
  • Government consumption demand:

$$ {QG}_{r, c}=\overline{GADJ_r}\cdot \overline{qg_{r, c}},\kern1em \forall r\in R, c\in C $$
  • Government revenue:

$$ \begin{array}{ll}{YG}_r=& \sum_{i\in \mathit{\mathrm{INSDNG}}}{\mathit{\mathrm{TINS}}}_{r,i}\cdot {YI}_{r,i}+\sum_{f\in F}{tf}_{r,f}\cdot {YF}_{r,f}\hfill \\ {}& +\sum_{a\in A}{ta}_{r,a}\cdot {PA}_{r,a}\cdot {QA}_{r,a}+\sum_{a\in A}{tva}_{r,a}\cdot {PVA}_{r,a}\cdot {QVA}_{r,a}\hfill \\ {}& +\sum_{c\in CM}{tm}_{r,c}\cdot {PWM}_c\cdot {dis\_ imp}_{r,c}\cdot {QM}_{r,c}\cdot {\overline{EXR}}_r\hfill \\ {}& +\sum_{c\in CE}{te}_{r,c}\cdot {PWE}_c\cdot {dis\_\mathit{\exp}}_{r,c}\cdot {QE}_{r,c}\cdot {\overline{EXR}}_r\hfill \\ {}& +\sum_{c\in C}\sum_{a\in A}{tqd}_{r,c,a}\cdot {\mathit{\mathrm{dfpq}}}_{r,c,a}\cdot {PQD}_{r,c}\cdot {\mathit{\mathrm{QINT}}}_{r,c,a}\hfill \\ {}& +\sum_{c\in C}\sum_{h\in H}{tqd}_{r,c,h}\cdot {\mathit{\mathrm{dfpq}}}_{r,c,h}\cdot {PQD}_{r,c}\cdot {QH}_{r,c,h}\hfill \\ {}& +\sum_{c\in C}{tqd}_{r,c," gov"}\cdot {\mathit{\mathrm{dfpq}}}_{r,c," gov"}\cdot {PQD}_{r,c}\cdot {QG}_{r,c}\hfill \\ {}& +\sum_{c\in C}{tqd}_{r,c,"S-I"}\cdot {\mathit{\mathrm{dfpq}}}_{r,c,"S-I"}\cdot {PQD}_{r,c}\cdot {\mathit{\mathrm{QINV}}}_{r,c}\hfill \\ {}& +\sum_{f\in F}{ YI F}_{r," gov",f}+{\mathit{\mathrm{TRII}}\_\mathit{\mathrm{Resource}}}_{r," gov"}\hfill \\ {}& -{\mathit{\mathrm{TRII}}\_ Use}_{r," gov"}+{\mathit{\mathrm{GHGTCOST}}}_r\cdot {\mathit{\mathrm{shincome}}}_{r," gov"}\hfill \\ {}& +{GHG\_ IMP}_r\cdot {EXR}_r\cdot \left({\mathit{\mathrm{PGHG}}\_ IMP\_ QUO}_r-{\mathit{\mathrm{PGHG}}\_ EXP\_ QUO}_r\right)\hfill \\ {}& +{\mathit{\mathrm{shres}}}_{r," gov"}\cdot \sum_{a\in A}{\mathit{\mathrm{PRES}}}_{r,a}\cdot {\mathit{\mathrm{QRES}}}_{r,a}\kern2em \forall r\in R\hfill \end{array} $$
  • Government expenditure:

$$ {EG}_r=\sum_{c\in C}{PQD}_{r, c}\cdot {dfpq}_{r, c," gov"}\cdot \left(1+{tqd}_{r, c," gov"}\right)\cdot {QG}_{r, c}\kern2em \forall r\in R $$
  • Transfer use

$$ {TRII\_ Use}_{r, i}={shii\_ use}_{r, i}\cdot \left(1-{MPS}_{r, i}\right)\cdot \left(1-{TINS}_{r, i}\right)\cdot {YI}_{r, i},\kern1.5em \forall r\in R, i\in INSDNG $$
  • Government transfer use:

$$ {TRII\_ Use}_{r," gov"}=\overline{{trnsfr\_ CRT}_{r," gov"}}\cdot {CPI}_r\kern2em \forall r\in R $$
  • Transfer resource:

$$ \begin{array}{ll}{\mathit{\mathrm{TRII}}\_\mathit{\mathrm{Resource}}}_{r,i}=\kern-1em & :{\mathit{\mathrm{shii}}\_\mathit{\mathrm{resource}}}_{r,i}\cdot \hfill \\ {}& \left({crt\_\mathit{\mathrm{in}}}_r\cdot \overline{EXR_r}-{crt\_\mathit{\mathrm{out}}}_r\cdot \overline{EXR_r}+\sum_{i\hbox{'}}{\mathit{\mathrm{TRII}}\_ Use}_{r,{i}^{\prime }}\right),\hfill \\ {}& \forall r\in R,i\in \mathit{\mathrm{INSD}}\ \hfill \end{array} $$
  • Imported commodity:

$$ {QWM}_{r, c}={QM}_{r, c},\kern0.75em \forall r\in R, c\in CM $$
  • Exported commodity:

$$ {QWE}_{r, c}={QE}_{r, c},\kern0.75em \forall r\in R, c\in CE $$
  • World trade nominal balance:

$$ \begin{array}{c}\sum_{r\in R}\left(1-{tw}_{r, c}\right)\cdot {PWM}_c\cdot {QWM}_{r, c}\cdot dis\_{imp}_{r, c}=\sum_{r\in R}{PWE}_c\cdot {QWE}_{r, c}\cdot {dis\_\mathit{\exp}}_{r, c}\\ {}\kern-10em -\sum_{c\in C\_ TRS}{PTRS}_c\cdot {QTRS}_c,\kern1em \forall c\in \left( CM\cap C E\right)\end{array} $$
  • World trade volume balance:

$$ \sum_{r\in R}{QWM}_{r, c}=\left(1-{\lambda}_c^w\right)\cdot \sum_{r\in R}\left({QWE}_{r, c}-{QTRS}_c\right),\kern0.75em \forall c\in \left( CM\cap CE\right) $$
  • Transport service demand:

$$ {QTRS}_c={tsh}_c\cdot \sum_r{QWE}_{r, c},\kern2em \forall c\in C\_ TRS $$
  • CIF and FOB relationship:

$$ {PTRS}_c\cdot {QTRS}_c=\sum_{r\hbox{'}}{tw}_{r^{\prime }, c}\cdot {PWM}_c\cdot {QWM}_{r^{\prime }, c}\cdot dis\_{imp}_{r^{\prime }, c},\kern1em \forall c\in C\_ TRS $$
  • Biomass consumption (household):

$$ {TBH}_{r, h}={poph}_{r, h}\cdot {bioc}_{r, h}\cdot {biod}_{r, h}\kern2em \forall r\in R, h\in H $$
  • Biomass consumption (industry):

$$ {TBI}_{r, a}={QA}_{r, a}\cdot {bioc}_{r, a}\cdot {biod}_{r, a}\kern2em \forall r\in R, a\in A $$
  • Emissions related to activity level (industrial activity):

$$ \begin{array}{ll}{\mathit{\mathrm{EMALI}}}_{r,a,g}=\kern-0.91em & {QA}_{r,a}\cdot {\mathit{\mathrm{efacl}}}_{r,a,g}\cdot \left(1-{\mathit{\mathrm{NERED}}}_{r,a,g}\right)\cdot \left(1+{\chi}_{r,a,g}\right)\hfill \\ {}& -\sum_{\mathit{\mathrm{emcm}}\in \mathit{\mathrm{EMCM}}}\left(\raisebox{1ex}{${\mathit{\mathrm{QRED}}}_{r,\mathit{\mathrm{emcm}},a}$}\!\left/ \!\raisebox{-1ex}{${\eta}_{\mathit{\mathrm{emcm}},a}$}\right.\right),\kern1em \forall r\in R,a\in A,g\in G\hfill \end{array} $$
  • Additional emission reductions related to activity level (industrial activity):

$$ {NERED}_{r, a, g}=1-{\left({PGHG}_r+1\right)}^{-{\sigma}_{r, a, g}^{ghg}},\kern2em \forall r\in R, a\in A, g\in G $$
  • Emissions related to activity level (household):

$$ {EMALH}_{r, h, g}={poph}_{r, h}\cdot {efacl}_{r, h, g}\kern2em \forall r\in R, h\in H, g\in G $$
  • Emissions related to fossil fuel combustion (industrial activity):

$$ {EMFFI}_{r, c, a, g}={QINT}_{r, c, a}\cdot {enur}_{r, c, a}\cdot {efffc}_{r, c, a, g}\kern2em \forall r\in R, c\in ENE, a\in A, g\in G $$
  • Emissions related to fossil fuel combustion (household):

$$ {EMFFH}_{r, c, h, g}={QH}_{r, c, h}\cdot {efffc}_{r, c, h, g}\kern2em \forall r\in R, c\in ENE, h\in H, g\in G $$
  • Emissions related to biomass combustion (industrial activity):

$$ {EMBII}_{r, a, g}={TBI}_{r, a}\cdot {efbio}_{r, a, g}\kern2em \forall r\in R, a\in A, g\in G $$
  • Emissions related to biomass combustion (household activity):

$$ {EMBIH}_{r, h, g}={TBH}_{r, h}\cdot {efbio}_{r, h, g}\kern2em \forall r\in R, h\in H, g\in G $$
  • GHG emission total in a region:

$$ \begin{array}{ll}\kern-0.2em {\mathit{\mathrm{GHGT}}}_r=\kern-0.75em & \sum_{g\in G}{gwp}_g\cdot \hfill \\ {}& \kern-3.9em \left\{\begin{array}{l}\left(\sum_{h\in H}\sum_{c\in C}{QH}_{r,c,h}\cdot {\mathit{\mathrm{enur}}}_{r,c,h}\cdot {\mathit{\mathrm{efffc}}}_{r,c,h,g}+\sum_{a\in A}\sum_{c\in C}{\mathit{\mathrm{QINT}}}_{r,c,a}\cdot {\mathit{\mathrm{enur}}}_{r,c,a}\cdot {\mathit{\mathrm{efffc}}}_{r,c,a,g}\right)\\ {}+\left(\sum_{h\in H}{\mathit{\mathrm{EMALH}}}_{r,h,g}+\sum_{a\in A}{\mathit{\mathrm{EMALI}}}_{r,a,g}\right)\\ {}+\left(\sum_{h\in H}{\mathit{\mathrm{EMBIH}}}_{r,h,g}+\sum_{a\in A}{\mathit{\mathrm{EMBII}}}_{r,a,g}\right)\end{array},\kern-0.45em \right\}\hfill \\ {}& \kern-3.56em \forall r\in R\hfill \end{array} $$
  • GHG emission includes emission trading:

$$ {GHGT\_ CT}_r={GHGT}_r-{GHGT\_ IMP}_r\cdot \kern1.5em \forall r\in R $$
  • GHG emission importing trading upper limit:

$$ \overline{{ghgt\_ imp\_ cap}_r}-{GHGT\_ IMP}_r\ge 0\kern1em \perp {PGHG\_ IMP\_ QUO}_r\ge 0\kern1.5em \forall r\in R $$
  • GHG emission exporting trading upper limit:

$$ {GHGT\_ IMP}_r-\overline{{ghgt\_\mathit{\exp}\_ cap}_r}\ge 0\kern1em \perp {PGHG\_ EXP\_ QUO}_r\ge 0\kern1.5em \forall r\in R $$
  • GHG emission price and international price:

$$ {\mathit{\mathrm{PGHG}}}_r={EXR}_r\cdot \left(\mathit{\mathrm{PGHG}}\_G+{\mathit{\mathrm{PGHG}}\_ IMP\_ QUO}_r-{\mathit{\mathrm{PGHG}}\_ EXP\_ QUO}_r\right)\kern1.5em \forall r\in R $$
  • GHG emission constraint:

$$ \overline{ghgc_r}-{GHGT\_ CT}_r\ge 0\kern1em \perp {PGHG}_r\ge 0\kern1.5em \forall r\in R $$
  • GHG emission cost of nonenergy (industry):

$$ {\mathit{\mathrm{GHGCA}}\_\mathit{\mathrm{NENE}}}_{r,a}={\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot \left({\mathit{\mathrm{EMBII}}}_{r,a,g}+{\mathit{\mathrm{EMALI}}}_{r,a,g}\right)\kern2em \forall r\in R,a\in A $$
  • GHG total cost:

$$ \begin{array}{ll}{\mathit{\mathrm{GHGTCOST}}}_r=& \sum_{a\in A}\left({\mathit{\mathrm{QINT}}}_{r,c,a}\cdot {\mathit{\mathrm{enur}}}_{r,c,a}\cdot {\mathit{\mathrm{efffc}}}_{r,c,a,g}\right)\hfill \\ {}& +{\mathit{\mathrm{GHGCA}}\_\mathit{\mathrm{NENE}}}_{r,c,a}+\sum_{h\in H}{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}{gwp}_g\cdot \hfill \\ {}& \left(\sum_{c\in C}{QH}_{r,c,h}\cdot {\mathit{\mathrm{efffc}}}_{r,c,h,g}+{\mathit{\mathrm{EMALH}}}_{r,h,g}+{\mathit{\mathrm{EMBIH}}}_{r,h,g}\right)\hfill \\ {}& \kern0.21em \forall r\in R\hfill \end{array} $$
  • Global GHG emission constraint:

$$ \overline{ghgtot\_ c}-\sum_{r\in R}{GHGT\_ CT}_r\ge 0\kern1em \perp PGHG\_ G\ge 0 $$
  • Global GHG emission constraint price:

$$ PGHG\_ G={PGHG}_r,\kern2em \forall r\in R $$
  • Global GHG emission trading total:

$$ \sum_{r\in R}{GHG\_ IMP}_r=0 $$
  • GHG emission related to the international transport:

$$ {EMFFINT}_{tr, g}=\sum_{c\in C}{INTTRSENE}_{tr, c}\cdot efint\_{tr s}_{tr, c, g} $$
(GAS_FROM_FF_INT)
  • International transport energy demand:

$$ {\mathit{\mathrm{INTTRSENE}}}_{tr,c}={\mathit{\mathrm{inttrenecoef}}}_{tr,c}\cdot \sum_r{\mathit{\mathrm{QDTRST}}}_{r, tr}\cdot {{\mathit{\mathrm{PGHG}}}_r}^{\mathit{\upsigma \mathrm{ghg}}\_ int} $$
(INTTRSENEDEF)
  • Nonenergy related gas emissions:

$$ {EMNEG}_{r, g}={ecfneng}_{r, g}\cdot {GDP}_r $$
  • Factor markets:

$$ \sum_{a\in A}{QF}_{r, f, a}={\overline{ QF S}}_{r, f},\kern1.25em \forall r\in R, f\in F $$
  • Composite commodity markets:

$$ \begin{array}{c}\kern-11.05em {QQ}_{r,c}-\left( QX{2}_{r,c}+{QM}_{r,c}\right)\cdot {\mathit{\mathrm{loss}}}_{r,c}+\mathit{\mathrm{stch}}{2}_{r,c}\\ {}\kern0.2em =\sum_{a\in A}{\mathit{\mathrm{QINT}}}_{r,c,a}+\sum_{h\in H}{QH}_{r,c,h}+{QG}_{r,c}+{\mathit{\mathrm{QINV}}}_{r,c},\kern1em \forall r\in R,c\in C\end{array} $$
  • Current-account balance for the rest of the world, in foreign currency:

$$ \begin{array}{ll}\hfill & \sum_{c\in CM}{PWM}_c\cdot {dis\_ imp}_{r,c}\cdot {QM}_{r,c}+{\mathit{\mathrm{transfr}}\_ crt\_\mathit{\mathrm{out}}}_r\\ {}& +{GHG\_ IMP}_r\cdot {\mathit{\mathrm{PGHG}}}_r+\sum_{f\in F}{\mathit{\mathrm{transfr}}}_{r," ROW",f}=\sum_{c\in CE}{PWE}_c\cdot {dis\_\mathit{\exp}}_{r,c}\cdot {QE}_{r,c}\hfill \\ {}& +{\mathit{\mathrm{transfr}}\_ crt\_\mathit{\mathrm{in}}}_r+\overline{{\mathit{\mathrm{FSAV}}}_r}+\sum_{f\in F}{\mathit{\mathrm{transfr}}\_\kern0.17em f}_{r,\kern0.10em f," ROW"}\hfill \\ {}& \kern0.4em \forall r\in R,f\in F\hfill \end{array} $$
  • Government balance:

$$ {YG}_r={EG}_r+{GSAV}_r\kern2em \forall r\in R $$
  • Direct tax rate:

$$ {\mathit{\mathrm{TINS}}}_{r,i}=\overline{{\mathit{\mathrm{tins}}}_{r,i}}\cdot \left(1+\overline{{\mathit{\mathrm{TINS}\mathrm{ADJ}}}_r}\cdot \mathit{\mathrm{tins}}{01}_{r,i}\right)+\overline{{\mathit{\mathrm{DTINS}}}_{r,i}}\cdot \mathit{\mathrm{tins}}{01}_{r,i},\kern1em \forall r\in R,i\in \mathit{\mathrm{INSDNG}} $$
  • Institutional savings rates:

$$ {MPS}_{r,i}=\overline{mps_{r,i}}\cdot \left(1+{\overline{\mathit{\mathrm{MPSADJ}}}}_r\cdot mps{01}_{r,i}\right)+{\mathit{\mathrm{DMPS}}}_r\cdot mps{01}_{r,i},\kern1em \forall r\in R,i\in \mathit{\mathrm{INSDNG}} $$
  • Savings-investment balance:

$$ \begin{array}{l}\sum_{i\in INSDNG}{MPS}_{r, i}\cdot \left(1-{TINS}_{r, i}\right)\cdot {YI}_{r, i}+{GSAV}_r+\overline{FSAV_r}\cdot \overline{EXR_r}\\ {}=\sum_{c\in C}{PQ}_{r, c}\cdot {dfpq}_{r, c," S- I"}\cdot \left(1+{tq}_{r, c," S- I"}\right)\cdot {QINV}_{r, i}+{WALRAS}_r\kern1.5em \forall r\in R\end{array} $$
  • Global investment balance:

$$ \sum_{r\in R}{FSAV}_r=0 $$
  • Activity constraint (upper boundary):

$$ \begin{array}{l}{\mathit{\mathrm{renew}}\_ up}_{r,a}-{QA}_{r,a}\cdot {\theta}_{r,a," COM\_ ELY"}\ge 0\kern1.5em {\mathit{\mathrm{VRENCAP}}}_{r,a}\ge 0,\\ {}\kern1em \forall r\in R,a\in A=\left\{{\mathit{\mathrm{renew}}\_ up}_{r,a}>0\right\}\end{array} $$
  • Activity constraint (QUOTA for aggregated region and activity):

$$ \begin{array}{ll}{\mathit{\mathrm{quotaqa}}}_{\mathit{\mathrm{ragg}},\mathit{\mathrm{aagg}}}=\kern-0.8em & \sum_{r\in Map\_\mathit{\mathrm{Ragg}}\left(r,\mathit{\mathrm{ragg}}\right)}\sum_{a\in Map\_\mathit{\mathrm{aagg}}\left(a,\mathit{\mathrm{aagg}}\right)}\sum_{c\in C}{QA}_{r,a}\cdot {\theta}_{r,a,c}\ge 0\hfill \\ {}& \perp {\mathit{\mathrm{RQUOQA}}\_ agg}_{\mathit{\mathrm{ragg}},\mathit{\mathrm{aagg}}}\ge 0,\forall \mathit{\mathrm{ragg}}\in \mathit{\mathrm{Ragg}},\mathit{\mathrm{aagg}}\in \mathit{\mathrm{Aagg}}\hfill \end{array} $$
  • Activity constraint (QUOTA shadow price):

$$ \begin{array}{c}{\mathit{\mathrm{RQUOQA}}}_{r,a}=\sum_{\mathit{\mathrm{ragg}}\in Map\_\mathit{\mathrm{Ragg}}\left(r,\mathit{\mathrm{ragg}}\right)}\sum_{\mathit{\mathrm{aagg}}\in Map\_\mathit{\mathrm{aagg}}\left(a,\mathit{\mathrm{aagg}}\right)}{\mathit{\mathrm{RQUOQA}}\_ agg}_{\mathit{\mathrm{ragg}},\mathit{\mathrm{aagg}}}\ge 0,\\ {}\kern-14.2em \forall r\in R,a\in A\end{array} $$
  • End-use device stock:

$$ {END\_ STK}_{r, ac,l}=\left(\left(1-1/{\tau}_l\right)\cdot {\mathit{\mathrm{stka}}\_ pre}_{r, ac,l}\cdot \left(1-\sum_{i\in LI\left(l,i\right)}{END\_\mathit{\mathrm{QEOR}}}_{r, ac,i}\right)+{END\_ QR}_{r, ac,l}\right) $$
  • End-use device stock operation:

$$ \left(1+{\lambda}_{r, ac, l}^d\right)\cdot {END\_ STK}_{r, ac, l}={END\_ QXD}_{r, ac, l} $$
  • End-use device service supply:

$$ \left(1+{\varphi}_{r, ac, i}\right)\cdot \sum_{l\in LI\left( l, i\right)}\left({ad}_{r, ac, l, i}\cdot END\_{QXD}_{r, ac, l}\right)={QSD}_{r, ac, i} $$
  • Industry service demand:

$$ {QSD}_{r,a,i}={sd\_\mathit{\mathrm{base}}}_{r,a,i}\cdot {\left(\frac{QA_{r,a}}{{QA\_\mathit{\mathrm{base}}}_{r,a}}\right)}^{{\mathit{\mathrm{indserincel}}}_{r,a}}\kern0.84em \forall a\notin A\_ TRS $$
  • Residential service demand:

$$ {QSD}_{r, h, i}={sd\_ base}_{r, h, i}\cdot {\left(\frac{EH_{r, h}}{{EH\_ base}_{r, h}}\cdot \frac{{CPI\_ base}_r}{CPI_r}\right)}^{{r esserincel}_{r, h}} $$
  • Transport service demand:

$$ {QSD}_{r, a, i}={sd\_ base}_{r, a, i}\cdot \frac{\sum_{tr\in MTR\left( tr, i\right)}{QDTRST}_{r, tr}}{\sum_{tr\in MTR\left( tr, i\right)} QDTRST\_{base}_{r, tr}}\kern0.96em \forall a\in A\_ TRS $$
  • End-use device new investment selection:

$$ \begin{array}{l}\sum_{i\in LI\left( l, i\right)}\left(\left(1+{\varphi}_{r, ac, i}\right)\cdot {ad}_{r, ac, l, i}\cdot \left(1+{\lambda}_{r, ac, l}^d\right)\cdot END\_{QR}_{r, ac, l}\right)\\ {}\kern1em =\sum_{i\in LI\left( l, i\right)}\left(\frac{\mu_{r, ac, l}\cdot {\left({END\_ PCOST}_{r, ac, l}\right)}^{\eta_{r, ac, l}^{end}}}{\sum_{ll\in LI\left( l l, i\right)}\left({\mu}_{r, ac, l l}\cdot {\left({END\_ PCOST}_{r, ac, l l}\right)}^{\eta_{r, ac, l l}^{end}}\right)}\cdot END\_{QR T}_{r, ac, i}\;\right)\end{array} $$
  • End-use device price:

$$ {END\_\mathit{\mathrm{PCOST}}}_{r, ac,l}={\mathit{\mathrm{invc}}}_{r, ac,l}+({\mathit{\mathrm{oped}}}_{r, ac,l}+\sum_{K\_ END}({ied}_{r, ac,l,K\_ END}\cdot ({END\_ PED}_{r,K\_ END, ac}+(1-\sum_{i\in LI\left(l,i\right)}{\mathit{\mathrm{BFRATIO}}}_{r, ac,i})\cdot {\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}\left({gwp}_{r,g}\cdot {\mathit{\mathrm{emcoef}}\_ end}_{r, ac,K\_ END,g}\right)))\;)\cdot \left(1+{\lambda}_{r, ac,l}^d\right) $$
  • End-use total new investment for service:

$$ {END\_ QRT}_{r, ac, i}\ge 0\kern1em \perp \kern1em {END\_ QEOR}_{r, ac, i}\ge 0 $$
  • End-use energy price:

$$ {END\_ PED}_{r, K\_ END, ac}={end\_ ped\_ base}_{r, K\_ END, ac}\cdot \sum_{c\in ENEENDMAP\left( c, K\_ END\right)}\left(\frac{PQD_{r, c}}{{PQD\_ base}_{r, c}}\right) $$
  • Energy use of service i in end-use energy:

$$ {END\_ ENE}_{r, ac, i, K\_ END}=\sum_{l\in LI\left( l, i\right)}{ied}_{r, ac, l, K\_ END}\cdot {END\_ QXD}_{r, ac, l} $$
  • Energy use of service i in CGE energy:

$$ \begin{array}{ll}\hfill & {\mathit{\mathrm{QEND}}\_ ENE}_{r,c, ac,i}\\ {}& =\sum_{\begin{array}{l}\mathit{\mathrm{KAGG}}\_ END\in MK\_\mathit{\mathrm{AGGC}}\left(\mathit{\mathrm{KAGG}}\_ END,c\right)\end{array}}\left(\sum_{\begin{array}{l}K\_ END\in MK\_\mathit{\mathrm{AGGEND}}\\ {}\left(\mathit{\mathrm{KAGG}}\_ END,K\_ END\right)\end{array}},\left({END\_ ENE}_{r, ac,i,K\_ END}\right),\cdot \right.\left.\frac{\mu_{r,c, ac,i}^{ea}\cdot {\left({\mathit{\mathrm{dfpq}}}_{r,c, ac}\cdot {PQD}_{r,c}\cdot \left(1+{tqd}_{r,c, ac}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}\left({gwp}_{r,g}\cdot {\mathit{\mathrm{enur}}}_{r,c, ac}\cdot {\mathit{\mathrm{efffc}}}_{r,c, ac,g}\right)\right)}^{\eta_{r,c, ac}^{ea}}}{\kern0.36em \sum_{\begin{array}{l} cp\in \mathit{\mathrm{MKAGGC}}\\ {}\left(\mathit{\mathrm{KAGG}}\_ END, CP\right)\end{array}}\left({\mu}_{r, cp, ac,i}^{ea}\cdot {\left({\mathit{\mathrm{dfpq}}}_{r, cp, ac}\cdot {PQD}_{r, cp}\cdot \left(1+{tqd}_{r, cp, ac}\right)+{\mathit{\mathrm{PGHG}}}_r\cdot \sum_{g\in G}\left({gwp}_{r,g}\cdot {\mathit{\mathrm{enur}}}_{r, cp, ac}\cdot {\mathit{\mathrm{efffc}}}_{r, cp, ac,g}\right)\right)}^{\eta_{r, cp, ac}^{ea}}\right)}\right)\;\hfill \end{array} $$
  • Industry end-use energy mapping:

$$ {QINT}_{r, c, a}=\sum_i\kern0.24em {QEND\_ ENE}_{r, c, a, i} $$
  • Industry end-use energy total:

$$ {QENE}_{r, a}=\sum_{c\in C\_ ENE(c)}\kern0.24em {QINT}_{r, c, a} $$
  • Transport end-use energy mapping:

$$ {TRS\_ ENE\_ FL}_{r, tr, c}=\sum_{i\in MTR\_ I\left( tr, i\right)}\kern0.24em {QEND\_ ENE}_{r, c," TRS", i}\kern1.12em \forall tr\in TR $$
  • Transport end-use energy total:

$$ {TRS\_ ENE}_{r, tr}=\sum_c{TRS\_ ENE\_ FL}_{r, tr, c} $$
  • Residential end-use energy mapping:

$$ {QH}_{r, c, h}-{QCARENE}_{r, h, c}=\sum_i\kern0.24em {QEND\_ ENE}_{r, c, h, i} $$
  • Residential car end-use energy mapping:

$$ {QCARENE}_{r, h, c}=\sum_{i\in MTR\_ I\left(" PC", i\right)}\kern0.24em {QEND\_ ENE}_{r, c," TRS", i} $$
  • Residential car end-use energy total:

$$ { QCARENE T}_{r, h}=\sum_c\kern0.24em {QCARENE}_{r, h, c} $$
  • End-use biofuel ratio:

$$ {BFRATIO}_{r, ac, i}\cdot \sum_{c\in MKaggc\left(" OIL", c\right)}\kern-0.24em {QEND\_ ENE}_{r, c, ac, i}=\kern0.36em {QEND\_ ENE}_{r," COM\_ BIO", ac, i} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Fujimori, S., Masui, T., Matsuoka, Y. (2017). AIM/CGE V2.0 Model Formula. In: Fujimori, S., Kainuma, M., Masui, T. (eds) Post-2020 Climate Action. Springer, Singapore. https://doi.org/10.1007/978-981-10-3869-3_12

Download citation

Publish with us

Policies and ethics