Skip to main content

Semiconductor MQWs Photo-Electronic Logic Devices

  • Chapter
  • First Online:
Fundamentals of Optical Computing Technology

Abstract

Semiconductor optoelectronics is currently one of the hottest research frontiers, especially after the attention in the optoelectronic properties of silicon-based optoelectronic technology and graphene optoelectronic technology. Various kinds of quantum wells, quantum wires, and quantum dots have been widely studied, which results indicate they have significant roles in promoting the development of the optical computing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng Y, Fu G (2010) Nano optoelectronic devices. Science Press

    Google Scholar 

  2. Ding H, Yu S-B, Wei J-S, Xiong H-M (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  Google Scholar 

  3. Jahns J, Lee S (1993) Optical computing hardware. Academic Press

    Google Scholar 

  4. Miller DAB, Chemla DS, Schmitt-Rink S (1986) Relation between electroabsorption in bulk semiconductors and in quantum wells: the quantum-confined Franz-Keldysh effect. Phys Rev B 33:6976–6982

    Article  Google Scholar 

  5. Kekatpure RD, Lentine A (2013) The suitability of SiGe multiple quantum well modulators for short reach DWDM optical interconnects. Opt Express 21(5):5318–5331

    Article  Google Scholar 

  6. Deng H, Chen H, Liang K et al. (2001) Design and performance analysis of InGaAs/GaAs multiple quantum well SEED. J Optoelectron Laser 12(3):222–224

    Google Scholar 

  7. Cao Y, Yin X, Xin X et al. (2009) Analysis of SEED optical switch on response time and diffusion characteristic. J Beijing Univ Posts Telecommun 32(3):127–130

    Google Scholar 

  8. Miller DAB, Chemla DS, Schmitt-Rink S (1986) Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect. Phys Rev B 33:6976–6981

    Article  Google Scholar 

  9. Ohkawa Y, Yamamoto T, Nagaya T et al (2005) Dynamic behaviors in coupled self-electro-optic effect devices. Appl Phys Lett 86:111107

    Article  Google Scholar 

  10. Morgan RA, Asom MT, Chirovsky LMF et al (1991) Low-voltage, high-saturation, optically bistable self-electro-optic effect devices using extremely shallow quantum wells. Appl Phys Lett 59(9):1049–1051

    Article  Google Scholar 

  11. Lentine AL, Chirovsky LMF, Dasaro LAD et al (1989) Energy scaling and subnanosecond switching of symmetric self-electrooptic effect devices. IEEE Photonics Technol Lett 1(6):129–131

    Article  Google Scholar 

  12. Lentine AL, Hinton HS, Miller DAB et al. (1989) Symmetric self-electrooptic effect device: optical set-reset latch, differential logic gate, and differential modulator/detector. IEEE J Quantum Electron 25(8):1928–1936

    Article  Google Scholar 

  13. Pezeshki B, Thomas D, Harris JS Jr (1991) Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators. Appl Phys Lett 57(15):1491–1492

    Article  Google Scholar 

  14. Rabinovich WS, Stievater TH, Papanicolaou NA et al (2003) Demonstration of a microelectromechanical tunable asymmetric Fabry-Pérot quantum well modulator. Appl Phys Lett 83(10):1923–1925

    Article  Google Scholar 

  15. Kwon OK, Kim K, Hyun KS et al (1996) Large non-biased all-optical bistability in an electroabsorption modulator using p-i-n-i-p diode and asymmetric Fabry-Perot cavity structure. Appl Phys Lett 68(23):3216–3217

    Article  Google Scholar 

  16. Schmitt-Rink S, Chemla DS, Knox WH, Miller DAB (1990) How fast is excitonic electroabsorption. Optics Lett 15:60–62 (1990)

    Article  Google Scholar 

  17. Chaisakul P, Marris-Morini D, Rouifed M-S et al (2012) 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator. Opt Express 20(3):3219–3224

    Article  Google Scholar 

  18. Boyd GD, Fox AM, Miller DAB et al (1990) 33 ps optical switching of symmetric self-electro-optic effect devices. Appl Phys Lett 57:1843–1845

    Article  Google Scholar 

  19. Chen H, Zeng Q, Li X et al. (2000) Research on micro-optoelectronic integrated smart pixels. J Optoelectron Laser 11(2):111–113

    Google Scholar 

  20. Junique S, Wang Q, Almqvist S et al (2005) GaAs-based multiple-quantum-well spatial light modulators fabricated by a wafer-scale process. Appl Opt 44(9):1635–1641

    Article  Google Scholar 

  21. Websites: www.lenslet.com, www.habrahabr.ru, and www.thirdwave.de

  22. Wang H-C, Liao C-H, Chueh Y-L et al (2013) Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy. Opt Mater Express 3(2):237–247

    Article  Google Scholar 

  23. Lupu A, Tchernycheva M, Kotsar Y et al (2012) Electroabsorption and refractive index modulation induced by intersubband transitions in GaN/AlN multiple quantum wells. Opt Express 20(11):12541–12549

    Article  Google Scholar 

  24. Shinokita K, Hirori H, Nagai M et al (2010) Dynamical Franz-Keldysh effect in GaAs/AlGaAs multiple quantum wells induced by single-cycle terahertz pulses. Appl Phys Lett 97(21):211902–211903

    Article  Google Scholar 

  25. Gramlich M, Balasubramanian S, Yu P (2006) Angle dependence of two-wave mixing efficiency in photorefractive multiple quantum wells. Appl Phys Lett 89(22):222103–222106

    Article  Google Scholar 

  26. Tasso IVM, De Souza EA (2010) Towards local motion detection by the use of analog self electro-optic effect device. Opt Express 18(8):8000–8005

    Article  Google Scholar 

  27. Cloonan TJ, Herron MJ, Tooley FAP et al (1990) An all-optical implementation of a 3-D crossover switching network. IEEE Photonics Technol Lett 2(6):438–440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujian Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 National Defense Industry Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Shao, Z., Zhu, M., Yang, J. (2018). Semiconductor MQWs Photo-Electronic Logic Devices. In: Fundamentals of Optical Computing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3849-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3849-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3847-1

  • Online ISBN: 978-981-10-3849-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics