Skip to main content

GaN Nanowall Network: Laser Assisted Molecular Beam Epitaxy Growth and Properties

  • Chapter
  • First Online:
Recent Trends in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 83))

  • 1206 Accesses

Abstract

Low dimensional structures such as two-dimensional (2D) nanowalls, 1D nanorods or nanowires and 0-D quantum dots of semiconductors exhibit different mechanical, electrical and optical properties compared to their bulk counterpart. Despite the promising properties of 1D and 0-D GaN nanostructures, they require complicated and expensive process to handle them individually for fabrication of specific devices. Here, 2D nanowall network draws a special attention due to their continuity in lateral direction and porous surfaces for fruitful applications in the field of nitride based sensors and other nano-scale devices. Among various semiconducting materials, a great attention has been given to the wide, direct band gap III-nitride semiconductors because of their applications in high efficient full color-spectrum light emitting diodes (LEDs), high power electronics devices and ultra-violet photo-detectors among others. This chapter describes the growth of 2D GaN nanowall network on GaN template and sapphire (0001) substrates using laser assisted molecular beam epitaxy (LMBE) technique. The GaN nanowalls of different dimensions were grown by laser ablation of a high purity polycrystalline GaN target in the presence of active r.f. nitrogen plasma. The wall width and pore size were controlled by tuning the laser frequency in the range 10–40 Hz. The structural, optical and electronic properties of the GaN nanowalls were investigated using various characterization techniques such as high resolution X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, Rutherford backscattering spectroscopy, photoluminescence and X-ray photoemission spectroscopy. Surface morphology studies exhibited a GaN nanowall network formation of wall width in the range 10–30 nm and pore sizes of 90–180 nm. The photoluminescence spectroscopy measurements showed the optical emission related to GaN nanowalls with a blue shift of about 100 meV from the bulk GaN emission for thinner GaN nanowalls of width <15 nm grown on both GaN template and sapphire (0001) substrates. The enhanced optical band gap of GaN nanowall network is the result of carrier confinement effect of two dimensional electrons when the wall width falls in range of Bohr exciton radius. The KOH wet-etching studies of homo-epitaxial GaN nanowalls confirmed the light emission from 2D GaN nanowall network structure due to quantum confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double heterostructure blue light emitting diodes. Appl. Phys. Lett. 64, 1687 (1994)

    Article  Google Scholar 

  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Continuous-wave operation of InGaN/GaN/AlGaN based laser diodes grown on GaN substrates. Appl. Phys. Lett. 72, 2014 (1998)

    Article  Google Scholar 

  3. F.A. Ponce, D.P. Bour, Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351 (1997)

    Article  Google Scholar 

  4. S. Nakamura, G. Fasol, The Blue Laser Diode—GaN Based Light Emitters and Lasers (Springer, Berlin, 1997)

    Google Scholar 

  5. S.C. Allen, A.J. Steck, A nearly ideal phosphor-converted white light emitting diode. Appl. Phys. Lett. 92, 143309 (2008)

    Article  Google Scholar 

  6. J. Wu, When group-III nitrides go infrared: new properties and perspectives. J. Appl. Phys. 106, 011101 (2009)

    Article  Google Scholar 

  7. H. Morkoc, Nitride Semiconductors and Devices (Springer, New York, 1999)

    Book  Google Scholar 

  8. O. Ambacher, Growth and applications of group III-nitrides. J. Phys. D Appl. Phys. 31, 2653 (1998)

    Article  Google Scholar 

  9. M. Shur, B. Gelmont, M.A. Khan, Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN. J. Electron. Mater. 25, 777 (1996)

    Article  Google Scholar 

  10. T. Brazzini, M.A. Casbon, H. Sun, M.J. Uren, J. Lees, P.J. Tasker, H. Jung, H. Blanck, M. Kuball, Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation. Appl. Phys. Lett. 106, 213502 (2015)

    Article  Google Scholar 

  11. H.-Y. Shin, S.K. Kwon, Y.I. Chang, M.J. Cho, K.H. Park, Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate. J. Cryst. Growth 311, 4167 (2009)

    Article  Google Scholar 

  12. V.E. Bougrov, M.A. Odnoblyudov, A.E. Romanov, T. Lang, O.V. Konstantinov, Threading dislocation density reduction in two-stage growth of GaN layers. Phys. Stat. Sol. (a) 203, R25 (2006)

    Google Scholar 

  13. X. Weng, J.D. Acord, A. Jain, E.C. Dickey, J.M. Redwing, Evolution of threading dislocation density and stress in GaN films grown on (111) Si substrates by metalorganic chemical vapor deposition. J. Electron. Mater. 36, 346 (2007)

    Article  Google Scholar 

  14. K. Okamoto, S. Inoue, N. Matsuki, T.-W. Kim, J. Ohto, M. Oshima, H. Fujioka, A. Ishii, Epitaxial growth of GaN films grown on single crystal Fe substrates. Appl. Phys. Lett. 93, 251906 (2008)

    Article  Google Scholar 

  15. A. Kobayashi, S. Kawano, K. Ueno, J. Ohta, H. Fujioka, H. Amani, S. Nagao, H. Horie, Growth of a-plane GaN on lattice-matched ZnO substrates using a room-temperature buffer layer. Appl. Phys. Lett. 91, 191905 (2007)

    Article  Google Scholar 

  16. K. Sakurada, A. Kobayashi, Y. Kawaguchi, J. Ohta, H. Fujioka, Low temperature epitaxial growth of GaN films on LiGaO2 substrates. Appl. Phys. Lett. 90, 211913 (2007)

    Article  Google Scholar 

  17. Y. Kawaguchi, J. Ohta, A. Kobayashi, H. Fujioka, Room-temperature epitaxial growth of GaN on lattice-matched ZrB2 substrates by pulsed-laser deposition. Appl. Phys. Lett. 87, 221907 (2005)

    Article  Google Scholar 

  18. R.D. Vispute, V. Talyansky, R.P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K.A. Jones, A.A. Iliadis, M. Asif Khan, J.W. Yang, Growth of epitaxial GaN films by pulsed laser deposition. Appl. Phys. Lett. 71, 102 (1997)

    Article  Google Scholar 

  19. M. Senthil Kumar, S.S. Kushvaha, K.K. Maurya, Low temperature growth of GaN epitaxial layers on sapphire (0001) by pulsed laser deposition using liquid Gallium target. Sci. Adv. Mater. 6, 1215 (2014)

    Google Scholar 

  20. S.S. Kushvaha, M. Senthil Kumar, K.K. Maurya, M.K. Dalai, N.D. Sharma, Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target. AIP Adv. 3, 092109 (2013)

    Article  Google Scholar 

  21. M. Senthil Kumar, S.S. Kushvaha, K.K. Maurya, K. Saravanan, S. Ojha, High resolution X-ray diffraction and Rutherford backscattering spectroscopy studies on laser molecular beam epitaxy grown GaN layers on sapphire (0001). Adv. Sci. Lett. 20, 1406 (2014)

    Google Scholar 

  22. S.S. Kushvaha, M. Senthil Kumar, M. Maheshwari, A.K. Shukla, P. Pal, K.K. Maurya, Structural and electronic properties of epitaxial GaN layer grown on sapphire (0001) using laser molecular beam epitaxy. Mater. Res. Express 1, 035903 (2014)

    Google Scholar 

  23. M. Senthil Kumar, K.M.K. Srivatsa, S.S. Kushvaha, Detection of dislocation-related midgap levels in pulsed laser deposited GaN by photo-induced current transient spectroscopy. Phys. Stat. Sol. (b) 252, 800 (2015)

    Google Scholar 

  24. S.S. Kushvaha, M. Senthil Kumar, B.S. Yadav, P.K. Tyagi, S. Ojha, K.K. Maurya, B.P. Singh, Influence of laser repetition rate on the structural and optical properties of GaN layers grown on sapphire (0001) by laser molecular beam epitaxy. Cryst. Eng. Comm. 18, 744 (2016)

    Article  Google Scholar 

  25. Z. Zhong, F. Qian, D. Wang, C.M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343 (2003)

    Article  Google Scholar 

  26. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002)

    Article  Google Scholar 

  27. A.T.M.G. Sarwar, S.D. Carnevale, F. Yang, T.F. Kent, J.J. Jamison, D.W. McComb, R.C. Myers, Semiconductor nanowire light-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices. Small 11, 5402 (2015)

    Article  Google Scholar 

  28. Z. Mi, S. Zhao, S.Y. Woo, M. Bugnet, M. Djavid, X. Liu, J. Kang, X. Kong, W. Ji, H. Guo, Z. Liu, G.A. Botton, Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers. J. Phys. D Appl. Phys. 49, 364006 (2016)

    Article  Google Scholar 

  29. R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A.V.T. Hart, T. Stoica, H. Lüth, Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 5, 981 (2008)

    Article  Google Scholar 

  30. H.P. Bhasker, V. Thakur, S.M. Shivaprasad, S. Dhar, Quantum coherence of electrons in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy. J. Phys. D Appl. Phys. 48, 255302 (2015)

    Article  Google Scholar 

  31. H.P. Bhasker, V. Thakur, M. Kesaria, S.M. Shivaprasad, S. Dhar, Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy. AIP Conf. Proc. 1583, 252 (2014)

    Article  Google Scholar 

  32. C.-H. Lee, Y.-J. Kim, J. Lee, Y.J. Hong, J.-M. Jeon, M. Kim, S. Hong, G.-C. Yi, Scalable network electrical devices using ZnO nanowalls. Nanotechnology 22, 055205 (2011)

    Article  Google Scholar 

  33. B.Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors. J. Phys. Chem. C 113, 10975 (2009)

    Article  Google Scholar 

  34. A. Zhong, K. Hane, Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy. Nanoscale Res. Lett. 7, 686 (2012)

    Article  Google Scholar 

  35. D. Poppitz, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Microstructure of porous gallium nitride nanowall networks. Acta Mater. 65, 98 (2014)

    Article  Google Scholar 

  36. S.S. Kushvaha, M. Senthil Kumar, A.K. Shukla, B.S. Yadav, D.K. Singh, M. Jewariya, S.R. Ragam, K.K. Maurya, Structural, optical and electronic properties of homoepitaxial GaN nanowalls grown on GaN template by laser molecular beam epitaxy. RSC Adv. 5, 87818 (2015)

    Google Scholar 

  37. E.J. Tarsa, B. Heying, X.H. Wu, P. Fini, S.P. DenBaars, J.S. Speck, Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 82, 5472 (1997)

    Article  Google Scholar 

  38. B. Heying, R. Averbeck, L.F. Chen, E. Haus, H. Riechert, J.S. Speck, Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy. J. Appl. Phys. 88, 1855 (2000)

    Article  Google Scholar 

  39. M. Kesaria, S. Shetty, S.M. Shivaprasad, Evidence for dislocation induced spontaneous formation of GaN nanowalls and nanocolumns on bare C-plane sapphire. Cryst. Growth Des. 11, 4900 (2011)

    Article  Google Scholar 

  40. A. Zhong, K. Hane, Characterization of GaN nanowall network and optical property of InGaN/GaN quantum wells by molecular beam epitaxy. Jpn. J. Appl. Phys. 52, 08JE13 (2013)

    Google Scholar 

  41. V. Thakur, M. Kesaria, S.M. Shivaprasad, Enhanced band edge luminescence from stress and defect free GaN nanowall network morphology. Solid State Comm. 171, 8 (2013)

    Article  Google Scholar 

  42. M. Kesaria, S.M. Shivaprasad, Nitrogen flux induced GaN nanostructure nucleation at misfit dislocations on Al2O3 (0001). Appl. Phys. Lett. 99, 143105 (2011)

    Article  Google Scholar 

  43. K.A. Bertness, A. Roshko, L.M. Mansfield, T.E. Harvey, N.A. Sanford, Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Cryst. Growth 310, 3154 (2008)

    Article  Google Scholar 

  44. Z.C. Feng, W. Wang, S.J. Chua, P.X. Zhang, K.P.J. Williams, G.D. Pitt, Raman scattering properties of GaN thin films grown on sapphire under visible and ultraviolet excitation. J. Raman Spectrosc. 32, 840 (2001)

    Article  Google Scholar 

  45. A. Kasic, D. Gogova, H. Larsson, C. Hemmingsson, I. Ivanov, B. Monemar, C. Bundesmann, M. Schubert, Micro-Raman scattering profiling studies on HVPE-grown free-standing GaN. Phys. Stat. Sol. (a) 201, 2773 (2004)

    Google Scholar 

  46. V.Y. Davydov, Y.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffman, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58, 12899 (1998)

    Article  Google Scholar 

  47. M.A. Reshchikov, H. Morkoc, Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005)

    Article  Google Scholar 

  48. M. Kesaria, S. Shetty, S.M. Shivaprasad, Spontaneous formation of GaN nanostructures by molecular beam epitaxy. J. Cryst. Growth 326, 191 (2011)

    Article  Google Scholar 

  49. H.P. Bhasker, S. Dhar, A. Sain, M. Kesaria, S.M. Shivaprasad, High electron mobility through the edge states in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy. Appl. Phys. Lett. 101, 132109 (2012)

    Article  Google Scholar 

  50. C.C. Wu, D.S. Wuu, T.N. Chen, T.E. Yu, P.R. Lin, R.H. Horng, H.Y. Lai, Growth and characterization of epitaxial ZnO Nanowall networks using metal organic chemical vapor deposition. Jpn. J. Appl. Phys. 47, 746 (2008)

    Article  Google Scholar 

  51. B. Ha, S.H. Seo, J.H. Cho, C.S. Yoon, J. Yoo, G.C. Yi, C.Y. Park, C.J. Lee, Optical and field emission properties of thin single-crystalline GaN nanowires. J. Phys. Chem. B 109, 11095 (2005)

    Article  Google Scholar 

  52. M.R. Coan, J.H. Woo, D. Johnson, I.R. Gatabi, H.R. Harris, Band offset measurements of the GaN/dielectric interfaces. J. Appl. Phys. 112, 024508 (2012)

    Article  Google Scholar 

  53. D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, Y. Fukuda, Selective etching of GaN polar surface in potassium hydroxide solution studied by X-ray photoelectron spectroscopy. J. Appl. Phys. 90, 4219 (2001)

    Article  Google Scholar 

  54. S.D. Wolter, B.P. Luther, D.L. Waltemyer, C. Önneby, S.E. Mohney, R.J. Molnar, X-ray photoelectron spectroscopy and X-ray diffraction study of the thermal oxide on gallium nitride. Appl. Phys. Lett. 70, 2156 (1997)

    Article  Google Scholar 

  55. M. Petravic, V.A. Coleman, K.J. Kim, B. Kim, G. Li, Defect acceptor and donor in ion-bombarded GaN. J. Vac. Sci. Technol. A 23, 1340 (2005)

    Article  Google Scholar 

  56. Y.-J. Lin, C.-D. Tsai, Y.-T. Lyu, C.-T. Lee, X-ray photoelectron spectroscopy study of (NH4)2Sx-treated Mg-doped GaN layers. Appl. Phys. Lett. 77, 687 (2000)

    Article  Google Scholar 

  57. J.J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables 32, 1 (1985)

    Article  Google Scholar 

  58. S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths. V. data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 21, 165 (1993)

    Article  Google Scholar 

  59. G. Koblmüller, J. Brown, R. Averbeck, H. Riechert, P. Pongratz, J.S. Speck, Continuous evolution of Ga adlayer coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. Appl. Phys. Lett. 86, 041908 (2005)

    Article  Google Scholar 

  60. S.H. Xu, H. Wu, X.Q. Dai, W.P. Lau, L.X. Zheng, M.H. Xie, S.Y. Tong, Direct observation of a Ga adlayer on a GaN (0001) surface by LEED Patterson inversion. Phys. Rev. B 67, 125409 (2003)

    Article  Google Scholar 

  61. A.R. Smith, R.M. Feenstra, D.W. Greve, J. Neugebauer, J.E. Northrup, Reconstructions of the GaN(000-1) Surface. Phys. Rev. Lett. 79, 3934 (1997)

    Article  Google Scholar 

  62. W. Lei, D. Liu, J. Zhang, B. Liu, P. Zhu, T. Cui, Q. Cui, G. Zou, AlN nanostructures: tunable architectures and optical properties. Chem. Comm. 1365 (2009)

    Google Scholar 

  63. K.A. Rickert, A.B. Ellis, F.J. Himpsel, J. Sun, T.F. Kuech, N–GaN surface treatments for metal contacts studied via X-ray photoemission spectroscopy. Appl. Phys. Lett. 80, 204 (2002)

    Article  Google Scholar 

  64. H.W. Jang, J.L. Lee, Origin of the abnormal behavior of contact resistance in ohmic contacts to laser-irradiated n-type GaN. Appl. Phys. Lett. 94, 182108 (2009)

    Article  Google Scholar 

  65. T. Hashizume, R. Nakasaki, Discrete surface state related to nitrogen-vacancy defect on plasma-treated GaN surfaces. Appl. Phys. Lett. 80, 4564 (2002)

    Article  Google Scholar 

  66. Y.J. Lin, Y.L. Chu, Effect of reactive ion etching-induced defects on the surface band bending of heavily Mg-doped p-type GaN. J. Appl. Phys. 97, 104904 (2005)

    Article  Google Scholar 

  67. M.G. Ganchenkova, R.M. Nieminen, Nitrogen vacancies as major point defects in gallium nitride. Phys. Rev. Lett. 96, 196402 (2006)

    Article  Google Scholar 

  68. D.J. Carter, M. Fuchs, C. Stampfl, Vacancies in GaN bulk and nanowires: effect of self-interaction corrections. J. Phys. Condens. Matter 24, 255801 (2012)

    Article  Google Scholar 

  69. F. Gao, E.J. Bylaska, A. El-Azab, W.J. Webber, Wannier orbitals and bonding properties of interstitial and antisite defects in GaN. Appl. Phys. Lett. 85, 5565 (2004)

    Article  Google Scholar 

  70. W.R.L. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoc, A. Rockett, X-ray photoelectron spectroscopy and theory of the valence band and semicore Ga 3d states in GaN. Phys. Rev. B 50, 14155 (1994)

    Article  Google Scholar 

  71. P. Lorenz, T. Haensel, R. Gutt, R.J. Koch, J.A. Schaefer, S. Krischok, Analysis of polar GaN surfaces with photoelectron and high resolution electron energy loss spectroscopy. Phys. Stat. Sol. (b) 247, 1658 (2010)

    Google Scholar 

  72. D. Skuridina, D.V. Dinh, B. Lacroix, P. Ruterana, M. Hoffmann, Z. Sitar, M. Pristovsek, M. Kneissl, P. Vogt, Polarity determination of polar and semipolar (11-22) InN and GaN layers by valence band photoemission spectroscopy. J. Appl. Phys. 114, 173503 (2013)

    Article  Google Scholar 

  73. M.A. Garcia, S.D. Wolter, T.-H. Kim, S. Choi, J. Baier, A. Brown, M. Losurdo, G. Bruno, Surface oxide relationships to band bending in GaN. Appl. Phys. Lett. 88, 013506 (2006)

    Article  Google Scholar 

  74. S.S. Kushvaha, M. Senthil Kumar, Advances in Nanomaterials (Springer, India, 2016)

    Google Scholar 

  75. S. Siddhanta, V. Thakur, C. Narayana, S.M. Shivaprasad, Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing. ACS Appl. Mater. Interfaces. 4, 5807 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. K.K. Maurya, Dr. Ajay K. Shukla, Dr. Dilip K. Singh, Ms. Mandeep Kaur, Dr. B.S. Yadav (SSPL, Delhi) and Mr. Sunil Ojha (IUAC, New Delhi) for the assistance in sample characterizations. The financial support by Council of Scientific and Industrial Research (CSIR) through network project PSC-0109 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Senthil Kumar or Sunil S. Kushvaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Senthil Kumar, M., Kushvaha, S.S. (2017). GaN Nanowall Network: Laser Assisted Molecular Beam Epitaxy Growth and Properties. In: Khan, Z. (eds) Recent Trends in Nanomaterials. Advanced Structured Materials, vol 83. Springer, Singapore. https://doi.org/10.1007/978-981-10-3842-6_9

Download citation

Publish with us

Policies and ethics