Skip to main content

Facile Synthesis of Large Surface Area Graphene and Its Applications

  • Chapter
  • First Online:
Recent Trends in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 83))

  • 1216 Accesses

Abstract

In 2008, one of the most costly materials on earth was graphene which was obtained by exfoliation method, having a model area of a human hair cross section costing more than $1000 as of April 2008 [2]. Since then, hunger for searching low-cost, non-hazardous alternative methods for scalable production of graphene continued. Graphene’s flexible chemistry with an atomic thickness makes it superlatives in material science, an ideal candidate for countless applications. Incredibly light weight and flexible, yet 200 times stronger than steel. Highly conductive but at the same time transparent, first 2D material existing but is one million times smaller than the diameter of a single human hair. Having all these amazing properties, graphene is creating an impact in wide range of industries including in fields of electronics, EMI shielding, composites, sensing devices as well as in energy storage, biomedical devices, and many more. Application of this wonder material is restricted to our imagination only. These engineering applications necessitate accessibility of graphene on the large scale, and methods used to synthesize this are facile, cost-effective, simple, quick, and single-step process, and thus appropriate processes are essential for synthesizing it down to a single-sheet level. The quality and quantity of graphene also plays an essential role, as the occurrence of defects, structural disorders, impurities, multiple domains, grain boundaries, and wrinkles in the graphene sheet can leave an unwanted effect on its electronic and optical properties. The present chapter will be aimed at the preparation of high quality few-layer graphene on a bulk scale from graphite in an affordable, nontoxic, and easy method. The methods which will be discussed in this chapter will be mostly on microwave-assisted synthesis of graphene and electrochemical exfoliation method used in our lab as well as reported by other workers, and how these methods are advantageous over conventional exfoliation methods. Last segment of this chapter will deal with applications of graphene particularly in EMI shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov et al., Science 306, 666 (2004)

    Article  Google Scholar 

  2. A.K. Geim, P. Kim, Carbon wonderland. Sci. Am. (2008)

    Google Scholar 

  3. A.K. Geim, A.H. MacDonald, Graphene: exploring carbon flatland. Phys. Today 60(8), 35–41 (2007)

    Article  Google Scholar 

  4. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)

    Article  Google Scholar 

  5. S.J. Woltornist, A.J. Oyer, J.-M.Y. Carrillo, A.V. Dobrynin, D.H. Adamson, Conductive thin films of pristine graphene by solvent interface trapping. ACS Nano 7(8), 7062–7066 (2013). doi:10.1021/nn402371c

    Article  Google Scholar 

  6. J.K. Wassei, R.B. Kaner, Graphene, a promising transparent conductor. Mater. Today 13, 52–59 (2010)

    Article  Google Scholar 

  7. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008)

    Article  Google Scholar 

  8. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  9. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Article  Google Scholar 

  10. S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009)

    Article  Google Scholar 

  11. Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131, 898–899 (2009)

    Article  Google Scholar 

  12. C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 9, 2206 (2009)

    Article  Google Scholar 

  13. G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)

    Article  Google Scholar 

  14. A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009)

    Article  Google Scholar 

  15. L.J. Cote, F. Kim, J. Huang, Langmuir-blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043–1049 (2009)

    Article  Google Scholar 

  16. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  Google Scholar 

  17. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)

    Article  Google Scholar 

  18. C.M. Chen, Q.H. Yang, Y.G. Yang, W. Lv, Y.F. Wen, P.X. Hou, M.Z. Wang, H.M. Cheng, Self-assembled free-standing graphite oxide membrane. Adv. Mater. 21, 3007–3011 (2009)

    Article  Google Scholar 

  19. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939–15944 (2009)

    Article  Google Scholar 

  20. V. López, R.S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, K. Kern, Chemical vapor deposition repair of graphene oxide: a route to highly-conductive graphene monolayers. Adv. Mater. 21, 4683–4686 (2009)

    Article  Google Scholar 

  21. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008)

    Article  Google Scholar 

  22. J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302-1 (2008)

    Google Scholar 

  23. X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, W.A. de Heer, Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 101, 026801-1 (2008)

    Google Scholar 

  24. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006)

    Article  Google Scholar 

  25. C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, L.-J. Li, Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 21, 5674–5680 (2009)

    Article  Google Scholar 

  26. C.Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, L.J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. ACS Nano 4, 5285–5292 (2010)

    Article  Google Scholar 

  27. X. Wang, L. Zhi, K. Müllen, Transparent, conductive raphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)

    Article  Google Scholar 

  28. G. Eda, Y.Y. Lin, S. Miller, C.-W. Chen, W.-F. Su, M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92, 233305 (2008)

    Article  Google Scholar 

  29. Y.W. Zhu, W.W. Cai, R.D. Piner, A. Velamakanni, R.S. Ruoff, Transparent self-assembled films of reduced graphene oxide platelets. Appl. Phys. Lett. 95, 103104 (2009)

    Article  Google Scholar 

  30. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)

    Article  Google Scholar 

  31. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill et al., Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008)

    Article  Google Scholar 

  32. S. De, P.J. King, M. Lotya, A. O’Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N. Coleman, Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6, 458–464 (2010)

    Article  Google Scholar 

  33. S. Biswas, L.T. Drzal, A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. Nano Lett. 9, 167–172 (2009)

    Article  Google Scholar 

  34. W.T. Gu, W. Zhang, X.M. Li, H.W. Zhu, J.Q. Wei, Z. Li, Q.K. Shu, C. Wang, K.L. Wang, W.C. Shen et al., Graphene sheets from worm-like exfoliated graphite. J. Mater. Chem. 19, 3367–3369 (2009)

    Article  Google Scholar 

  35. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and langmuir-blodgett films. Nat. Nanotechnol. 3, 538–542 (2008)

    Article  Google Scholar 

  36. C. Valles, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, A. Penicaud, Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802–15804 (2008)

    Article  Google Scholar 

  37. J.H. Lee, D.W. Shin, V.G. Makotchenko, A.S. Nazarov, V.E. Fedorov, Y.H. Kim, J.Y. Choi, J.M. Kim, J.B. Yoo, One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv. Mater. 21, 4383–4387 (2009)

    Article  Google Scholar 

  38. J. Lu, J.X. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009)

    Article  Google Scholar 

  39. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)

    Article  Google Scholar 

  40. D.L. Boxall, C.M. Lukehart, Rapid synthesis of Pt or Pd/carbon nanocomposites using microwave irradiation. Chem. Mater. 13, 806–810 (2001)

    Article  Google Scholar 

  41. K.W. Gallis, C.C. Landry, Rapid calcination of nanostructured silicate composites by microwave irradiation. Adv. Mater. 13, 23–26 (2001)

    Article  Google Scholar 

  42. J. Liang, Z.X. Deng, X. Jiang, F.L. Li, Y.D. Li, Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg. Chem. 41, 3602–3604 (2002)

    Article  Google Scholar 

  43. C.R. Patra, G. Alexandra, S. Patra et al., Microwave approach for the synthesis of rhabdophane-type lanthanide orthophosphate (Ln = La, Ce, Nd, Sm, Eu, Gd and Tb) nanorods under solvothermal conditions. New J. Chem. 29, 733–739 (2005)

    Article  Google Scholar 

  44. W.F. Chen, L.F. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48, 1146–1152 (2010)

    Article  Google Scholar 

  45. M.A.H. Hassan, V. Abdelsayed, A.E.R.S. Khder et al., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19, 3832–3837 (2009)

    Article  Google Scholar 

  46. J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133, 8888–8891 (2011)

    Article  Google Scholar 

  47. K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng et al., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014)

    Article  Google Scholar 

  48. J. Liu, H. Yang, S.G. Zhen, C.K. Poh, A. Chaurasia, J. Luo et al., A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Adv 3, 11745–11750 (2013)

    Article  Google Scholar 

  49. P. Tripathi, C.R. Prakash Patel, A. Dixit, A.P. Singh, P. Kumar, M.A. Shaz, R. Srivastava, G. Gupta, S.K. Dhawan, B.K. Gupta, O.N. Srivastava, High yield synthesis of electrolyte heating assisted electrochemically exfoliated graphene for electromagnetic interference shielding applications. RSC Adv. 5, 19074–19081 (2015)

    Article  Google Scholar 

  50. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    Article  Google Scholar 

  51. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  52. S. Bae, H.K. Kim, Y.B. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y. Song et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)

    Article  Google Scholar 

  53. X.S. Li, Y.W. Zhu, W.W. Cai, M. Borysiak, B.Y. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009)

    Article  Google Scholar 

  54. U. Khan, J.N. Coleman, Small 6, 864–871 (2010)

    Article  Google Scholar 

  55. M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, ACS Nano 4, 3155–3162 (2010)

    Article  Google Scholar 

  56. G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Carbon 47, 3242–3246 (2009)

    Article  Google Scholar 

  57. M. Alanyalıoğlu, J.J. Segura, J. Oró-Solè, N. Casañ-Pastor, Carbon 50, 142–152 (2012)

    Article  Google Scholar 

  58. K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang et al., Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7, 3598–3606 (2013)

    Article  Google Scholar 

  59. C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011)

    Article  Google Scholar 

  60. P. Tripathi, C. Ravi Prakash Patel, M.A. Shaz, O.N. Srivastava, Synthesis of high-quality graphene through electrochemical exfoliation of graphite in alkaline electrolyte. http://arxiv.org/ftp/arxiv/papers/1310/1310.7371.pdf (2012)

  61. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 18, 1518 (2008)

    Article  Google Scholar 

  62. K.S. Rao, J. Senthilnathan, Y.F. Liu, M. Yoshimura, Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Sci. Rep. 4 (2014)

    Google Scholar 

  63. J. Liu, M. Notarianni, G. Will, V.T. Tiong, H. Wang, N. Motta, Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir 29, 13307–13314 (2013)

    Article  Google Scholar 

  64. J.B. Nelson, D.P. Riley, Proc. Phys. Soc. Lon. 57, 477–486 (1945)

    Article  Google Scholar 

  65. Z. Liu, J.Z. Liu, Y. Cheng, Z. Li, L. Wang, Q. Zheng, Phys. Rev. B: Condens. Matter Mater. Phys. 85, 205418 (2012)

    Article  Google Scholar 

  66. Sima Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites. Mater. Des. 95, 119–126 (2016)

    Article  Google Scholar 

  67. W. Sun, H. Li, Y. Wang, Microwave-assisted synthesis of graphene nanocomposites: recent developments on lithium-ion batteries. Reports in Electrochemistry, p. 5 (2015)

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge UGC, MNRE, DST, and BHU. One of the authors (M.T) acknowledges the financial support from DST (WOS-A scheme File no. SR/WOS-A/PM-25/2016). Authors are also thankful to group members of the Nanoscience unit and Hydrogen Energy Centre, Dept. of Physics, BHU for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahe Talat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Talat, M., Tripathi, P., Srivastava, O.N. (2017). Facile Synthesis of Large Surface Area Graphene and Its Applications. In: Khan, Z. (eds) Recent Trends in Nanomaterials. Advanced Structured Materials, vol 83. Springer, Singapore. https://doi.org/10.1007/978-981-10-3842-6_7

Download citation

Publish with us

Policies and ethics