Skip to main content

Density Functional Theory (DFT) Study of Novel 2D and 3D Materials

  • Chapter
  • First Online:
Recent Trends in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 83))

  • 1290 Accesses

Abstract

In the present study, the analysis of novel 2D and 3D materials based on density functional theory (DFT) has been demonstrated which has drawn much research attention because of their fascinating properties. ZnO, GaN, diamond, and phosphorene are the best popular materials of recent study. Firstly, the enhancement of ferromagnetism in GaN monolayer doped with copper has been depicted. The findings of this study represent the ferromagnetic character due to the doping of 6.25% (concentration) of nonmagnetic Cu and magnetic long-range coupling among Cu dopant in GaN 2D monolayer which has the value of magnetic moment of 2.0 μB per Cu atom. While for ZnO (2D) layer, the formation of Schottky contact and the interfacial transfer of charge between Cu substrate and ZnO layer has been focused. In 3D materials case, diamond has been the center of attention because of its reliability in the materials society that is why different metals are doped in diamond. By the analysis of electronic properties, the semiconductor behavior is observed when diamond is doped with Ta. The negative value of formation energy makes oxygen-doped diamond layer, a thermodynamically favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)

    Article  Google Scholar 

  2. T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965 (2010)

    Article  Google Scholar 

  3. I. Zutic, J. Fabian, S.D. Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004)

    Article  Google Scholar 

  4. S.D. Sarma, Ferromagnetic semiconductors: a giant appears in spintronics. Nat. Mater. 2, 292 (2003)

    Article  Google Scholar 

  5. I. Malajovich, J.J. Berry, N. Samarth, D.D. Awschalom, Persistent sourcing of coherent spins for multifunctional semiconductor spintronics. Nature 411, 770 (2001)

    Article  Google Scholar 

  6. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998)

    Article  Google Scholar 

  7. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  Google Scholar 

  8. J.S. Lee, J.D. Lim, Z.G. Khim, Y.D. Park, S.J. Pearton, S.N.G. Chu, Magnetic and structural properties of Co, Cr, V ion-implanted GaN. J. Appl. Phys. 93, 4512 (2003)

    Article  Google Scholar 

  9. J.R. Neal, A.J. Behan, R.M. Ibrahim, H.J. Blythe, M. Ziese, A.M. Fox, G.A. Gehring, Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films. Phys. Rev. Lett. 96, 197208 (2006)

    Article  Google Scholar 

  10. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, P. Ahmet, T. Chikyow, M. Kawasaki, S. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001)

    Article  Google Scholar 

  11. M. Zaja, J. Gosk, E. Granka, M. Kaminska, A. Twardowski, B. Strojek, T. Szyszko, S. Podsiadlo, Possible origin of ferromagnetism in (Ga,Mn)N. J. Appl. Phys. 93, 4715 (2003)

    Article  Google Scholar 

  12. J.Y. Kim, J.H. Park, B.G. Park, H.J. Noh, S.J. Oh, J.S. Yang, D.H. Kim, S.D. Bu, W. Noh, H.J. Lin, H.H. Hsieh, C.T. Chen, Ferromagnetism induced by clustered co in co-doped anatase TiO2 thin films. Phys. Rev. Lett. 90, 017401 (2003)

    Article  Google Scholar 

  13. K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. Koinuma, Magneto-optical properties of ZnO-based diluted magnetic semiconductors. J. Appl. Phys. 89, 7284 (2001)

    Article  Google Scholar 

  14. S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, H. Hori, Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J. Appl. Phys. 91, 7911 (2002)

    Article  Google Scholar 

  15. D.B. Buchholz, R.P.H. Chang, J.H. Song, J.B. Ketterson, Room-temperature ferromagnetism in Cu-doped ZnO thin films. J. Appl. Phys. Lett. 87, 082504 (2005)

    Article  Google Scholar 

  16. M.S. Park, B.I. Min, Ferromagnetism in ZnO codoped with transition metals: Zn 1− x(FeCo)x O and Zn 1− x(FeCu)x O. Phys. Rev. B 68, 224436 (2003)

    Article  Google Scholar 

  17. C.H. Chien, S.H. Chiou, G.Y. Guo, Y.D. Yao, Electronic structure and magnetic moments of 3d transition metal-doped ZnO. J. Magn. Magn. Mater. 282, 275 (2004)

    Article  Google Scholar 

  18. X. Feng, Electronic structures and ferromagnetism of Cu-and Mn-doped ZnO. J. Phys.: Condens. Matter 16, 4251 (2004)

    Google Scholar 

  19. L.H. Ye, A.J. Freeman, B. Delley, Half-metallic ferromagnetism in Cu-doped ZnO: density functional calculations. Phys. Rev. B 73, 033203 (2006)

    Article  Google Scholar 

  20. U. Grossner, S. Gabrielsen, T.M. Borseth, J. Grillenberger, A.Y. Kuznetsov, G. Svensson, Palladium Schottky barrier contacts to hydrothermally grown n-ZnO and shallow electron states. Appl. Phys. Lett. 85, 2259 (2004)

    Article  Google Scholar 

  21. H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, S. Sugimura, K. Hane, Y. Kashi-waba, Schottky ultraviolet photodiode using a ZnO hydrothermally grown single crystal substrate. Appl. Phys. Lett. 90, 121906 (2007)

    Article  Google Scholar 

  22. C.L. Phillips, P.D. Bristowe, First principles study of the adhesion asymmetry of a metal/oxide interface. J. Mater. Sci. 43, 3960 (2008)

    Article  Google Scholar 

  23. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  Google Scholar 

  24. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)

    Article  Google Scholar 

  25. K.S. Novoselov, A.K. Geim, S.V. Morozov, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451 (2005)

    Article  Google Scholar 

  26. Y.W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444, 347 (2006)

    Article  Google Scholar 

  27. E.J. Kan, Z.Y. Li, J.L. Yang, J.G.J. Hou, Half-metallicity in edge-modified zigzag graphene nanoribbons. Am. Chem. Soc. 130, 4224 (2008)

    Article  Google Scholar 

  28. O. Hod, V. Barone, J.E. Peralta, G.E. Scuseria, Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7, 2295 (2007)

    Article  Google Scholar 

  29. W. Chen, Y.F. Li, G.T. Yu, C.Z. Li, S.B. Zhang, Z. Zhou, Z.F.J. Chen, Hydrogenation: a simple approach to realize semiconductor—half-metal—metal transition in boron nitride nanoribbons. Am. Chem. Soc. 132, 1699 (2010)

    Article  Google Scholar 

  30. M.S. Si et al., Intrinsic ferromagnetism in hexagonal boron nitride nanosheets. J. Chem. Phys. 140, 204701 (2014)

    Article  Google Scholar 

  31. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, 3270 (1998)

    Article  Google Scholar 

  32. O. Dulub, U. Diebold, G. Kresse, Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys. Rev. Lett. 90, 016102 (2003)

    Article  Google Scholar 

  33. C. Noguera, Polar oxide surfaces. J. Phys.: Condens. Matter 12, 367 (2000)

    Google Scholar 

  34. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T.S. Turner, G. Thorn-ton, N.M. Harrison, Stability of polar oxide surfaces. Phys. Rev. Lett. 86, 3811 (2001)

    Article  Google Scholar 

  35. Y.K. Tseng, M.H. Chuang, Y.C. Chen, C.H. Wu, Synthesis of 1d, 2d, and 3d ZnO polycrystalline nanostructures using the sol-gel method. J. Nanotechnol. 8, 712850 (2012)

    Google Scholar 

  36. M. Ullah, E. Ahmed, F. Hussain, A.M. Rana, R. Raza, Electronic structure calculations of oxygen-doped diamond using DFT technique. Microelectr. Eng. 146, 26 (2015)

    Article  Google Scholar 

  37. D. Lu, H.D. Li, S.H. Cheng, J.J. Yuan, X.Y. Lv, Fabrication and characteristics of nitrogen doped nanocrystalline diamond/p-type silicon heterojunction. Nano-Micro Lett. 2, 56 (2010)

    Article  Google Scholar 

  38. Y. Koide, M.Y. Liao, J. Alvarez, M. Imura, K. Sueishi, F. Yoshifusa, Schottky photodiode using submicron thick diamond epilayer for flame sensing. Nano-Micro Lett. 1, 30 (2009)

    Article  Google Scholar 

  39. Y. Zhang, L. Zhang, J. Zhao, L. Wang, G. Zhao, Y. Zhang, Doping of vanadium to nanocrystalline diamond films by hot filament chemical vapor deposition. Nanoscale Res. Lett. 7, 441 (2012)

    Article  Google Scholar 

  40. Z.J. Li, L. Wang, Y.J. Su, P. Liu, Y.F. Zhang, Semiconducting single-walled carbon nanotubes synthesized by S-doping. Nano-Micro Lett. 1, 9 (2009)

    Article  Google Scholar 

  41. S. Yamanaka, H. Watanabe, S. Masai, D. Takenuchi, H. Okushi, K. Kajimura, High-quality B-doped homoepitaxial diamond films using trimethylboron. Jpn. J. Appl. Phys. 37, 1129 (1998)

    Article  Google Scholar 

  42. A.T. Collins, The electronic and optical properties of diamond; do they favour device applications? Mater. Res. Soc. Symp. Proc. 162, 3 (1990)

    Article  Google Scholar 

  43. N. Fujimoro, T. Imai, H. Nakahata, H. Shiomi, Y. Nishibayashi, Epitaxial growth of diamond and diamond devices. Mater. Res. Soc. Symp. Proc. 162, 23 (1990)

    Article  Google Scholar 

  44. Y. Saito, Diamond synthesis from methane-hydrogen-water mixed gas using a microwave plasma. J. Mater. Sci. 23, 842 (1988)

    Article  Google Scholar 

  45. R. Kalish, Doping of diamond. Carbon 37, 781 (1999)

    Article  Google Scholar 

  46. S.A. Kajihara, A. Antonelli, J. Bernholc, R. Car, Nitrogen and potential n-type dopants in diamond. Phys. Rev. Lett. 66, 2010 (1991)

    Article  Google Scholar 

  47. S. Prawer, D.N. Jamieson, R.J. Walker, K.K. Lee, F. Watt, R. Kalish, Lattice substitution of phosphorous in diamond by MeV ion implantation and pulsed laser annealing. Diamond Films Technol. 6, 351 (1997)

    Google Scholar 

  48. M.E. Zvanut, W.E. Carlos, J.A. Freitas Jr., K.D. Jamison, R.P. Hellmer, Identification of phosphorus in diamond thin films using electron paramagnetic resonance spectroscopy. Appl. Phys. Lett. 65, 2287 (1994)

    Article  Google Scholar 

  49. N. Arshi, J. Lu, C.G. Lee, B.H. Koo, F. Ahmed, Power-dependent structural, morphological and electrical properties of electron beam evaporated tantalum films. Electron. Mater. Lett. 9, 841 (2013)

    Article  Google Scholar 

  50. S. Talapatra, P.G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S.C. Deevi, P.M. Ajayan, Irradiation-induced magnetism in carbon nanostructures. Phys. Rev. Lett. 95, 097201 (2005)

    Article  Google Scholar 

  51. H. Ohldag, T. Tyliszczak, R. Hohne, D. Spemann, P. Esquinazi, M. Ungureanu, T. Butz, π-electron ferromagnetism in metal-free carbon probed by soft X-ray dichroism. Phys. Rev. Lett. 97, 187204 (2007)

    Article  Google Scholar 

  52. Y. Zhang, S. Talapatra, S. Kar, R. Vajtai, S.K. Nayak, P.M. Ajayan, First-principles study of defect-induced magnetism in carbon. Phys. Rev. Lett. 99, 107201 (2007)

    Article  Google Scholar 

  53. W.L. Wang, S. Meng, E. Kaxiras, Graphene nanoflakes with large spin. Nano Lett. 8, 241 (2008)

    Article  Google Scholar 

  54. Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444, 347 (2006)

    Article  Google Scholar 

  55. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998)

    Article  Google Scholar 

  56. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  Google Scholar 

  57. S. Yamanaka, H. Watanabe, S. Masai, D. Takenuchi, H. Okushi, K. Kajimura, High-quality B-doped homoepitaxial diamond films using trimethylboron. Jpn. J. Appl. Phys. 37, 1129 (1998)

    Article  Google Scholar 

  58. S.B. Zhang, J.E. Northrup, Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339 (1991)

    Article  Google Scholar 

  59. D.W. Boukhvalov, First principles modeling of the interactions of iron impurities with graphene and graphite. Phys. Status Solidi B 248, 1347 (2011)

    Article  Google Scholar 

  60. P.A. Brown, C. Xu, K.L. Shuford, Periodic trends of pnictogen substitution into a graphene monovacancy: a first-principles investigation. Chem. Mater. 26, 5735 (2014)

    Article  Google Scholar 

  61. D.W. Boukhvalov, M.I. Katsnelson, Destruction of graphene by metal adatoms. Appl. Phys. Lett. 95, 023109 (2009)

    Article  Google Scholar 

  62. G. Li, F. Li, X. Wang, M. Zhao, X. Liu, Gold atom and dimer adsorbed on perfect and defective graphene and boron nitride monolayer: A first-principles study. Physica E 59, 235 (2014)

    Article  Google Scholar 

  63. D. Xu, J. Zhao, X. Wang, A density functional theory study of the adsorption of bimetallic FenPtm clusters on defective graphene: structural, electronic and magnetic properties. J. Nanopart. Res. 15, 1 (2013)

    Google Scholar 

  64. L.Y. Isseroff, E.A. Carter, Electronic structure of pure and doped cuprous oxide with copper vacancies: suppression of trap states. Chem. Mater. 25, 253 (2013)

    Article  Google Scholar 

  65. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko et al., Graphene-based liquid crystal device. Nano lett. 8, 1704 (2008)

    Article  Google Scholar 

  66. L. Feng, Simulation of crystal, electronic and magnetic structures, and gas adsorption of two dimensional materials, 20, 5 (2014)

    Google Scholar 

  67. C.G. Van de Walle, J. Neugebauer, First-principles surface phase diagram for hydrogen on GaN surfaces. Phys. Rev. Lett. 88, 066103 (2002)

    Article  Google Scholar 

  68. Q.Z. Xue, Q.K. Xue, R.Z. Bakhtizin, Y. Hasegawa, I.S.T. Tsong, T. Sakurai, T. Ohno, Atomistic investigation of various GaN (0001) phases on the 6 H-SiC (0001) surface. Phys. Rev. B 59, 12604 (1999)

    Article  Google Scholar 

  69. A.R. Smith, R.M. Feenstra, D.W. Greve, M.S. Shin, M. Skowronski, J. Neugebauer, J.E. Northrup, GaN (0001) surface structures studied using scanning tunneling microscopy and first-principles total energy calculations. Surf. Sci. 423, 70 (1999)

    Article  Google Scholar 

  70. Q.K. Xue, Q.Z. Xue, R.Z. Bakhtizin, Y. Hasegawa, I.S.T. Tsong, T. Sakurai, T. Ohno, Structures of GaN (0001)-(2 × 2), -(4 × 4), and -(5 × 5) surface reconstructions. Phys. Rev. Lett. 82, 3074 (1999)

    Article  Google Scholar 

  71. A.R. Smith, R.M. Feenstra, D.W. Greve, J. Neugebauer, J.E. Northrup, Reconstructions of the GaN (000 1) surface. Phys. Rev. Lett. 79, 3934 (1997)

    Article  Google Scholar 

  72. T. Strasser, C. Solterbeck, F. Starrost, W. Schattke, Valence-band photoemission from the GaN (0001) surface. Phys. Rev. B 60, 11577 (1999)

    Article  Google Scholar 

  73. A.L. Rosa, J. Neugebauer, First-principles calculations of the structural and electronic properties of clean GaN (0001) surfaces. Phys. Rev. B 73, 205346 (2006)

    Article  Google Scholar 

  74. F.H. Wang, P. Krüger, J. Pollmann, Electronic structure of 1 × 1 GaN (0001) and GaN (0001) surfaces. Phys. Rev. B 64, 035305 (2001)

    Article  Google Scholar 

  75. R.G. Hernandez, W.L. Perez, M.G.M. Armenta, M.J.A. Rodríguez, Vanadium adsorption and incorporation at the GaN (0001) surface: a first-principles study. Phys. Rev. B 81, 195407 (2010)

    Article  Google Scholar 

  76. R.Q. Wu, G.W. Peng, L. Liu, Y.P. Feng, Ferromagnetism in Mg-doped AlN from ab initio study. Appl. Phys. Lett. 89, 142501 (2006)

    Article  Google Scholar 

  77. D.B. Buchholz, R.P.H. Chang, J.Y. Song, J.B. Ketterson, Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett. 87, 082504 (2005)

    Article  Google Scholar 

  78. F. Hussain, Y.Q. Cai, M.J.I. Khan, M. Imran, M. Rashid, H. Ullah, E. Ahmad, F. Kousar, S.A. Ahmad, Enhanced ferromagnetic properties of Cu doped two-dimensional GaN monolayer. Int. J. of Mod. Phys. 26, 1 (2015)

    Article  Google Scholar 

  79. Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790 (1999)

    Article  Google Scholar 

  80. R. Fiederling, M. Keim, W. Reuscher, G. Ossau, A. Schmidt, A. Waag, L.W. Molenkamp, Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787 (1999)

    Article  Google Scholar 

  81. B. Sanyal, O. Bengone, S. Mirbit, Electronic structure and magnetism of Mn-doped GaN. Phys. Rev. B 68, 205210 (2003)

    Article  Google Scholar 

  82. S. Larentis, J.R. Tolsma, B. Fallahazad, D.C. Dillen, K. Kim, A.H. MacDonald, E. Tutuc, Band offset and negative compressibility in graphene-MoS2 heterostructures. Nano Lett. 14, 2039 (2014)

    Article  Google Scholar 

  83. K.B. Sundaram, A. Khan, Work function determination of zinc oxide films. J. Vac. Sci. Technol. A 15, 2 (1997)

    Google Scholar 

  84. Y.Q. Cai, A. Zhang, Y.P. Feng, C. Zhang, H.F. Teoh, G.W. Ho, Strain effects on work functions of pristine and potassium-decorated carbon nanotubes. J. Chem. Phys. 131, 224701 (2009)

    Article  Google Scholar 

  85. S. Ju, S. Kim, S. Mohammadi, D.B. Janes, Y.G. Ha, A. Facchetti, T.J. Marks, Interface studies of ZnO nanowire transistors using low-frequency noise and temperature-dependent I-V measurements. Appl. Phys. Lett. 92, 022104 (2008)

    Article  Google Scholar 

  86. V. Dose, W. Altmann, A. Goldmann, U. Kolac, J. Rogozik, Image-potential states observed by inverse photoemission. Phys. Rev. Lett. 52, 1919 (1984)

    Article  Google Scholar 

  87. A. Venugopal, L. Colombo, E.M. Vogel, Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 96, 013512 (2010)

    Article  Google Scholar 

  88. C. Gong, G. Lee, B. Shan, E.M. Vogel, R.M. Wallace, K. Cho, First-principles study of metal graphene interfaces. J. Appl. Phys. 108, 123711 (2010)

    Article  Google Scholar 

  89. R. Tung, Formation of an electric dipole at metal-semiconductor interfaces. Phys. Rev. B. 64, 20 (2001)

    Article  Google Scholar 

  90. J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717 (1947)

    Article  Google Scholar 

  91. M. Ullah, E. Ahmed, F. Hussain, A.M. Rana, R. Raza, H. Ullah, Electronic structure calculations of oxygen-doped diamond using DFT technique. Microelectron. Eng. 146, 26 (2015)

    Article  Google Scholar 

  92. C.X. Yan, Y. Dai, B.B. Huang, DFT study of halogen impurity in diamond. J. Phys. D Appl. Phys. 42, 145407 (2009)

    Article  Google Scholar 

  93. H. Zhou, Y. Yokoi, H. Tamura, S. Takami, M. Kubo, A. Miyamoto, Quantum chemical calculations of sulfur doping reactions in diamond CVD. Jpn. J. Appl. Phys. 40, 2830 (2001)

    Article  Google Scholar 

  94. M. Ullah, E. Ahmed, I.U. Hassan, M.J. Jackson, W. Ahmed, Controlling properties of micro crystalline diamond films using oxygen in a hot filament chemical vapor deposition system. J. Manuf. Technol. Res. 3, 153 (2011)

    Google Scholar 

  95. R. Long, Y. Dai, L. Yu, Structural and electronic properties of oxygen-adsorbed diamond (100) surface. J. Phys. Chem. C 111, 855 (2007)

    Article  Google Scholar 

  96. A. Gali, J.E. Lowther, P. Deak, Defect states of substitutional oxygen in diamond. J. Phys.: Condens. Matter 13, 11607 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fayyaz Hussain or Hafeez Ullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hussain, F., Imran, M., Ullah, H. (2017). Density Functional Theory (DFT) Study of Novel 2D and 3D Materials. In: Khan, Z. (eds) Recent Trends in Nanomaterials. Advanced Structured Materials, vol 83. Springer, Singapore. https://doi.org/10.1007/978-981-10-3842-6_10

Download citation

Publish with us

Policies and ethics