Skip to main content

Heat Transfer and Pollutant Dispersion in Street Canyons

  • Chapter
  • First Online:
Pollutant Dispersion in Built Environment

Abstract

The Heat transfer rapid economic development with a dramatic growth of urbanization has induced many environmental issues. The emission of various pollutants into the atmospheric is one of the most severe pollutions, which directly associated people’s health problems in urban air environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Gallagher, L.W. Gill, A. Mcnabola. Numerical modelling of the passive control of air pollution in asymmetrical urban street canyons using refined mesh discretization schemes. Building & Environment. 56 (2012) 232–40.

    Google Scholar 

  2. T.R. Oke. Street design and urban canopy layer climate. Energy & Buildings. 11 (1988) 103–13.

    Google Scholar 

  3. J.J. Kim, J.J. Baik. A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons. Journal of Applied Meteorology. 38 (1999) 1249–61.

    Google Scholar 

  4. S.M. Salim, R. Buccolieri, A. Chan, S.D. Sabatino. Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES. Journal of Wind Engineering & Industrial Aerodynamics. 99 (2011) 103–13.

    Google Scholar 

  5. Y. Tominaga, T. Stathopoulos. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmospheric Environment. 79 (2013) 716–30.

    Google Scholar 

  6. J.F. Sini, S. Anquetin, P.G. Mestayer. Pollutant dispersion and thermal effects in urban street canyons. Atmospheric Environment. 30 (1996) 2659–77.

    Google Scholar 

  7. R.N. Meroney, M. Pavageau, S. Rafailidis, M. Schatzmann. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons. Journal of Wind Engineering & Industrial Aerodynamics. 62 (1996) 37–56.

    Google Scholar 

  8. X. Xie, Z. Huang, J. Wang. The impact of urban street layout on local atmospheric environment. Building & Environment. 41 (2006) 1352–63.

    Google Scholar 

  9. X.X. Li, C.H. Liu, D. Leung. Numerical investigation of pollutant transport characteristics inside deep urban street canyons. Atmospheric Environment. 43 (2009) 2410–8.

    Google Scholar 

  10. J. Levitin, J. Haerkoenen, J. Kukkonen, J. Nikmo. Evaluation of the CALINE4 and CAR-FMI models against measurements near a major road. Atmospheric Environment. 39 (2005) 4439–52.

    Google Scholar 

  11. J. Berger, S.E. Walker, B. Denby, R. Berkowicz, P. Løfstrøm, M. Ketzel, et al. Evaluation and inter-comparison of open road line source models currently in use in the Nordic countries. Boreal Environment Research. 15 (2008) 319–34.

    Google Scholar 

  12. A. Venkatram, V. Isakov, R. Seila, R. Baldauf. Modeling the impacts of traffic emissions on air toxics concentrations near roadways. Atmospheric Environment. 43 (2009) 3191–9.

    Google Scholar 

  13. H. Chen, S. Bai, D.S. Eisinger, D. Niemeier, M. Claggett. Predicting Near-Road PM2.5 Concentrations: Comparative Assessment of CALINE4, CAL3QHC, and AERMOD2009.

    Google Scholar 

  14. C.C.C. Wong, C.H. Liu. Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness. Boundary-Layer Meteorology. 147 (2013) 281–300.

    Google Scholar 

  15. T.L. Chan, G. Dong, C.W. Leung, C.S. Cheung, W.T. Hung. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon. Atmospheric Environment. 36 (2002) 861–72.

    Google Scholar 

  16. C.H. Chang, J.S. Lin, C.M. Cheng, Y.S. Hong. Numerical simulations and wind tunnel studies of pollutant dispersion in the urban street canyons with different height arrangements. Journal of Marine Science & Technology. 21 (2013) 119–26.

    Google Scholar 

  17. Y.D. Huang, W.R. He, C.N. Kim. Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon. Environmental Science & Pollution Research International. 22 (2015) 2117–37.

    Google Scholar 

  18. Y. Huang, Z. Zhou. A Numerical Study of Airflow and Pollutant Dispersion Inside an Urban Street Canyon Containing an Elevated Expressway. Environmental Modeling & Assessment. 18 (2013) 105–14.

    Google Scholar 

  19. Y. Miao, S. Liu, Y. Zheng, S. Wang, Y. Li. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations. Advances in Meteorology. 2014 (2014) 1–14.

    Google Scholar 

  20. J.J. Kim, J.J. Baik. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k – ε turbulence model. Atmospheric Environment. 38 (2004) 3039–48.

    Google Scholar 

  21. J. Hang, M. Sandberg, Y. Li, L. Claesson. Pollutant dispersion in idealized city models with different urban morphologies. Atmospheric Environment. 43 (2009) 6011–25.

    Google Scholar 

  22. Y. Huang, X. Xu, Z.Y. Liu, C.N. Kim. Effects of Strength and Position of Pollutant Source on Pollutant Dispersion Within an Urban Street Canyon. Environmental Forensics. 16 (2015) 163–72.

    Google Scholar 

  23. S.J. Mei, C.W. Liu, L. Di, F.Y. Zhao, H.Q. Wang, X.H. Li. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications. Science of the Total Environment. 565 (2016) 1102–15.

    Google Scholar 

  24. G. Mills. An urban canopy-layer climate model. Theoretical & Applied Climatology. 57 (1997) 229–44.

    Google Scholar 

  25. N.Y.O. Tong, D.Y.C. Leung. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons. Journal of Environmental Sciences. 24 (2012) 2091–103.

    Google Scholar 

  26. P. Wang, D. Zhao, W. Wang, H. Mu, G. Cai, C. Liao. Thermal Effect on Pollutant Dispersion in an Urban Street Canyon. International Journal of Environmental Research. 5 (2011) 813–20.

    Google Scholar 

  27. B. Pulvirenti, S.D. Sabatino, R. Buccolieri. Thermal effects on flow and pollutant dispersion within street canyons. Turbulence, Heat and Mass Transfer 6 Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer 2009. pp. E-0210.

    Google Scholar 

  28. D.M.S. Madalozzo, A.L. Braun, A.M. Awruch, I.B. Morsch. Numerical simulation of pollutant dispersion in street canyons: Geometric and thermal effects. Applied Mathematical Modelling. 38 (2014) 5883–909.

    Google Scholar 

  29. W.W. Li, R.N. Meroney. Gas dispersion near a cubical model building. Part I. Mean concentration measurements. Journal of Wind Engineering & Industrial Aerodynamics. 12 (1983) 15–33.

    Google Scholar 

  30. Y. Ogawa, S. Oikawa, K. Uehara. Field and wind tunnel study of the flow and diffusion around a model cube—II. Nearfield and cube surface flow and concentration patterns. Atmospheric Environment. 17 (1983) 1161–71.

    Google Scholar 

  31. R.N. Meroney. Bluff-body aerodynamics influence on transport and diffusion. Journal of Wind Engineering & Industrial Aerodynamics. 33 (1990) 21–33.

    Google Scholar 

  32. J. Hang, Y. Li, M. Sandberg, R. Buccolieri, S.D. Sabatino. The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Building & Environment. 56 (2012) 346–60.

    Google Scholar 

  33. J. Hang, Y. Li, M. Sandberg. Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy. Journal of Wind Engineering & Industrial Aerodynamics. 99 (2011) 1036–55.

    Google Scholar 

  34. M.F. Yassin, R. Kellnerová, Z. Janour. Numerical simulation on pollutant dispersion from vehicle exhaust in street configurations. Environmental Monitoring & Assessment. 156 (2009) 257–73.

    Google Scholar 

  35. S.J. Park, J.J. Kim, M.J. Kim, R.J. Park, H.B. Cheong. Characteristics of flow and reactive pollutant dispersion in urban street canyons. Atmospheric Environment. 108 (2015) 20–31.

    Google Scholar 

  36. L. Yang, Y. Li. Thermal conditions and ventilation in an ideal city model of Hong Kong. Energy & Buildings. 43 (2011) 1139–48.

    Google Scholar 

  37. Y. Miao, S. Liu, Y. Zheng, S. Wang, Z. Liu, B. Zhang. Numerical study of the effects of Planetary Boundary Layer structure on the pollutant dispersion within built-up areas. Journal of Environmental Sciences. 32 (2015) 168–79.

    Google Scholar 

  38. Peng, Ming, Cheng, Wu. Modeling Thermal Comfort and Optimizing Local Renewal Strategies—A Case Study of Dazhimen Neighborhood in Wuhan City. Sustainability. 7 (2015) 3109–28.

    Google Scholar 

  39. C. Peng, T. Ming, J. Gui, Y. Tao, Z. Peng. Numerical analysis on the thermal environment of an old city district during urban renewal. Energy & Buildings. 89 (2015) 18–31.

    Google Scholar 

  40. Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering & Industrial Aerodynamics. 96 (2008) 1749–61.

    Google Scholar 

  41. FlunetInc. Fluent user’s guide. 2006.

    Google Scholar 

  42. F. Kreith. Principles Of Sustainable Energy Systems, Second Edition. Crc Press. (2013).

    Google Scholar 

  43. K. Kimura, D.G. Stephenson. Solar radiation on cloudy days. Ashrae Journal. (1969).

    Google Scholar 

  44. K. Uehara, S. Murakami, S. Oikawa, S. Wakamatsu. Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmospheric Environment. 34 (2000) 1553–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingzhen Ming .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Zhejiang University Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ming, T., Peng, C., Gong, T., Li, Z. (2017). Heat Transfer and Pollutant Dispersion in Street Canyons. In: Pollutant Dispersion in Built Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-3821-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3821-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3820-4

  • Online ISBN: 978-981-10-3821-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics