Large Scale Fabrication of Triboelectric Energy Harvesting and Sensing Applications

Part of the Springer Theses book series (Springer Theses)


One of the important factors affecting the performance of tribo-electrification process is the surface topography of the contact surfaces.


Load Resistor Sensor Array Copper Film Liquid Crystal Polymer Emboss Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012)CrossRefGoogle Scholar
  2. 2.
    L. Dhakar, F. Tay, C. Lee, Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures. J. Micromech. Microeng. 24, 104002 (2014)CrossRefGoogle Scholar
  3. 3.
    L. Dhakar, F.E.H. Tay, L. Chengkuo, Development of a broadband triboelectric energy harvester with SU-8 micropillars. J. Microelectromech. Syst. 24, 91–99 (2015)CrossRefGoogle Scholar
  4. 4.
    X.-S. Zhang, M.-D. Han, R.-X. Wang, F.-Y. Zhu, Z.-H. Li, W. Wang et al., Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13, 1168–1172 (2013)CrossRefGoogle Scholar
  5. 5.
    B. Meng, W. Tang, Z.-H. Too, X. Zhang, M. Han, W. Liu et al., A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 6, 3235–3240 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 2818–2824 (2014)CrossRefGoogle Scholar
  7. 7.
    L. Zhang, L. Cheng, S. Bai, C. Su, X. Chen, Y. Qin, Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting. Nanoscale 7, 1285–1289 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Yang, J. Chen, Y. Liu, W. Yang, Y. Su, Z.L. Wang, Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8, 2649–2657 (2014)CrossRefGoogle Scholar
  9. 9.
    G. Zhu, Y. Su, P. Bai, J. Chen, Q. Jing, W. Yang et al., Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8, 6031–6037 (2014)CrossRefGoogle Scholar
  10. 10.
    G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang et al., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13, 847–853 (2013)CrossRefGoogle Scholar
  11. 11.
    C.K. Jeong, K.M. Baek, S. Niu, T.W. Nam, Y.H. Hur, D.Y. Park et al., Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 14, 7031–7038 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Kim, S.-B. Jeon, J.Y. Kim, M.-L. Seol, S.O. Kim, Y.-K. Choi, High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 12, 331–338 (2015)CrossRefGoogle Scholar
  13. 13.
    Z.-H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, Z.L. Wang, Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 7, 4554–4560 (2013)CrossRefGoogle Scholar
  14. 14.
    S.-H. Shin, Y.H. Kwon, Y.-H. Kim, J.-Y. Jung, M.H. Lee, J. Nah, Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9, 4621–4627 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Yang, Y.S. Zhou, H. Zhang, Y. Liu, S. Lee, Z.L. Wang, A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 25, 6594–6601 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen et al., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7, 8266–8274 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Yang, H. Zhang, J. Chen, Q. Jing, Y.S. Zhou, X. Wen et al., Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7, 7342–7351 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Zhong, X. Shan, Microstructure formation via roll-to-roll UV embossing using a flexible mould made from a laminated polymer–copper film. J. Micromech. Microeng. 22, 085010 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations