Overview of Energy Harvesting Technologies

Part of the Springer Theses book series (Springer Theses)


Harvesting or scavenging mechanical energy from the surroundings is a potential strategy to develop self-powered sensor nodes and electronic devices. In this chapter, a literature review is presented for various mechanical energy harvesting technologies to understand the state-of-the-art. The first part of the chapter discusses commonly used principles to convert mechanical energy into electrical energy. Basic physics and working all the mechanisms have been explained and previously developed devices by other research groups have been reviewed.


Mechanical Energy Contact Electrification Wind Energy Energy Harvester Open Circuit Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford, 1996)Google Scholar
  2. 2.
    S. Roundy, P.K. Wright, A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2004)CrossRefGoogle Scholar
  3. 3.
    N. White, P. Glynne-Jones, S. Beeby, A novel thick-film piezoelectric micro-generator. Smart Mater. Struct. 10, 850–852 (2001)CrossRefGoogle Scholar
  4. 4.
    M. Renaud, K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof, R. Puers, Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sens. Actuators, A 145, 380–386 (2008)CrossRefGoogle Scholar
  5. 5.
    J.-Q. Liu, H.-B. Fang, Z.-Y. Xu, X.-H. Mao, X.-C. Shen, D. Chen et al., A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron. J. 39, 802–806 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic Power Harvesting in Shoes, in Digest of Papers. Second International Symposium on Wearable Computers 1998, 1998, pp. 132–139Google Scholar
  7. 7.
    S. Priya, Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 87, 184101 (2005)CrossRefGoogle Scholar
  8. 8.
    Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRefGoogle Scholar
  9. 9.
    X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)CrossRefGoogle Scholar
  10. 10.
    S.Y. Chung, S. Kim, J.H. Lee, K. Kim, S.W. Kim, C.Y. Kang et al., All-solution-processed flexible thin film piezoelectric nanogenerator. Adv. Mater. 24, 6022–6027 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Lee, S.H. Bae, L. Lin, Y. Yang, C. Park, S.W. Kim et al., Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv. Funct. Mater. 23, 2445–2449 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Lin, Y. Hu, C. Xu, Y. Zhang, R. Zhang, X. Wen et al., Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy 2, 75–81 (2013)CrossRefGoogle Scholar
  13. 13.
    C. Williams, C. Shearwood, M. Harradine, P. Mellor, T. Birch, R. Yates, Development of an Electromagnetic Micro-Generator, in IEE Proceedings on Circuits, Devices and Systems, 2001, pp. 337–342Google Scholar
  14. 14.
    J.M. Lee, S.C. Yuen, W.J. Li, P.H. Leong, Development of an AA Size Energy Transducer with Micro Resonators, in ISCAS’03 Proceedings of the 2003 International Symposium on Circuits and Systems, 2003, vol. 4, 2003, pp. IV-876–IV-879Google Scholar
  15. 15.
    N.N. Ching, H. Wong, W.J. Li, P.H. Leong, Z. Wen, A laser-micromachined multi-modal resonating power transducer for wireless sensing systems. Sens. Actuators, A 97, 685–690 (2002)CrossRefGoogle Scholar
  16. 16.
    C. Cepnik, U. Wallrabe, A flat high performance micro energy harvester based on a serpentine coil with a single winding, in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 2011, pp. 661–664Google Scholar
  17. 17.
    B. Yang, C. Lee, W. Xiang, J. Xie, J.H. He, R.K. Kotlanka et al., Electromagnetic energy harvesting from vibrations of multiple frequencies. J. Micromech. Microeng. 19, 035001 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Kulkarni, E. Koukharenko, R. Torah, J. Tudor, S. Beeby, T. O’Donnell et al., Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens. Actuators, A 145, 336–342 (2008)CrossRefGoogle Scholar
  19. 19.
    J.M. Donelan, Q. Li, V. Naing, J. Hoffer, D. Weber, A.D. Kuo, Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319, 807–810 (2008)CrossRefGoogle Scholar
  20. 20.
    E. Halvorsen, S.D. Nguyen, MEMS Electrostatic Energy Harvesters with Nonlinear Springs, in Advances in Energy Harvesting Methods, (Springer, Berlin, 2013), pp. 63–90Google Scholar
  21. 21.
    S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A.P. Chandrakasan, J.H. Lang, Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 9, 64–76 (2001)CrossRefGoogle Scholar
  22. 22.
    D. Hoffmann, B. Folkmer, Y. Manoli, Analysis and characterization of triangular electrode structures for electrostatic energy harvesting. J. Micromech. Microeng. 21, 104002 (2011)CrossRefGoogle Scholar
  23. 23.
    B. Yang, C. Lee, R.K. Kotlanka, J. Xie, S.P. Lim, A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations. J. Micromech. Microeng. 20, 065017 (2010)CrossRefGoogle Scholar
  24. 24.
    D. Nguyen, E. Halvorsen, G. Jensen, A. Vogl, Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. J. Micromech. Microeng. 20, 125009 (2010)CrossRefGoogle Scholar
  25. 25.
    S.D. Nguyen, E. Halvorsen, Nonlinear springs for bandwidth-tolerant vibration energy harvesting. J. Microelectromech. Syst. 20, 1225–1227 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Boland, Y.-H. Chao, Y. Suzuki, Y. Tai, Micro Electret Power Generator, in IEEE the Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto, 2003, pp. 538–541Google Scholar
  27. 27.
    T. Tsutsumino, Y. Suzuki, N. Kasagi, Y. Sakane, Seismic power generator using high-performance polymer electret, in 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul, 2006, pp. 98–101Google Scholar
  28. 28.
    Y. Sakane, Y. Suzuki, N. Kasagi, The development of a high-performance perfluorinated polymer electret and its application to micro power generation. J. Micromech. Microeng. 18, 104011 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Matsusaka, H. Maruyama, T. Matsuyama, M. Ghadiri, Triboelectric charging of powders: a review. Chem. Eng. Sci. 65, 5781–5807 (2010)CrossRefGoogle Scholar
  30. 30.
    W. Harper, The Volta effect as a cause of static electrification, in Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 205, 1951, pp. 83–103Google Scholar
  31. 31.
    D. Davies, Charge generation on dielectric surfaces. J. Phys. D Appl. Phys. 2, 1533 (1969)CrossRefGoogle Scholar
  32. 32.
    Y. Murata, S. Kittaka, Evidence of electron transfer as the mechanism of static charge generation by contact of polymers with metals. Jpn. J. Appl. Phys. 18, 421 (1979)CrossRefGoogle Scholar
  33. 33.
    J. Henniker, Triboelectricity in polymers. Nature 196, 474 (1962)CrossRefGoogle Scholar
  34. 34.
    A. Diaz, R. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004)Google Scholar
  35. 35.
    S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576–3583 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou, Y. Hu et al., Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25, 6184–6193 (2013)CrossRefGoogle Scholar
  37. 37.
    Z.-H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, Z.L. Wang, Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 7, 4554–4560 (2013)CrossRefGoogle Scholar
  38. 38.
    W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su et al., Harvesting energy from the natural vibration of human walking. ACS Nano 7, 11317–11324 (2013)CrossRefGoogle Scholar
  39. 39.
    G. Cheng, Z.-H. Lin, L. Lin, Z.-L. Du, Z.L. Wang, Pulsed nanogenerator with huge instantaneous output power density. ACS Nano 7, 7383–7391 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Han, X.-S. Zhang, B. Meng, W. Liu, W. Tang, X. Sun et al., r-Shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano 7, 8554–8560 (2013)CrossRefGoogle Scholar
  41. 41.
    Y. Yang, H. Zhang, Y. Liu, Z.-H. Lin, S. Lee, Z. Lin et al., Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7, 2808–2813 (2013)CrossRefGoogle Scholar
  42. 42.
    Y. Yang, H. Zhang, J. Chen, Q. Jing, Y.S. Zhou, X. Wen et al., Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7, 7342–7351 (2013)CrossRefGoogle Scholar
  43. 43.
    L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen et al., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7, 8266–8274 (2013)CrossRefGoogle Scholar
  44. 44.
    Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong, Z.-H. Lin et al., Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7, 9461–9468 (2013)CrossRefGoogle Scholar
  45. 45.
    Q. Jing, G. Zhu, P. Bai, Y. Xie, J. Chen, R.P. Han et al., Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 8, 3836–3842 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Yang, L. Lin, Y. Zhang, Q. Jing, T.-C. Hou, Z.L. Wang, Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano 6, 10378–10383 (2012)CrossRefGoogle Scholar
  47. 47.
    P. Bai, G. Zhu, Z.-H. Lin, Q. Jing, J. Chen, G. Zhang et al., Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7, 3713–3719 (2013)CrossRefGoogle Scholar
  48. 48.
    W. Du, X. Han, L. Lin, M. Chen, X. Li, C. Pan et al., A three dimensional multi‐layered sliding triboelectric nanogenerator, Adv. Energy Mater. 4(11), (2014)Google Scholar
  49. 49.
    H. Guo, X. He, J. Zhong, Q. Zhong, Q. Leng, C. Hu et al., A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A 2, 2079–2087 (2014)CrossRefGoogle Scholar
  50. 50.
    G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012)Google Scholar
  51. 51.
    T.-C. Hou, Y. Yang, H. Zhang, J. Chen, L.-J. Chen, Z. Lin Wang, Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2, 856–862 (2013)CrossRefGoogle Scholar
  52. 52.
    G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang et al., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13, 847–853 (2013)CrossRefGoogle Scholar
  53. 53.
    F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012)CrossRefGoogle Scholar
  54. 54.
    Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan et al., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26, 5851–5856 (2014)CrossRefGoogle Scholar
  55. 55.
    Y. Xie, S. Wang, L. Lin, Q. Jing, Z.-H. Lin, S. Niu et al., Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7, 7119–7125 (2013)CrossRefGoogle Scholar
  56. 56.
    G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5 (2014)Google Scholar
  57. 57.
    S. Chen, C. Gao, W. Tang, H. Zhu, Y. Han, Q. Jiang et al., Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator, Nano Energy 14, 217–225 (2014)Google Scholar
  58. 58.
    J. Bae, J. Lee, S. Kim, J. Ha, B.-S. Lee, Y. Park et al., Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 5 (2014)Google Scholar
  59. 59.
    Z.H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water–solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed. 52, 12545–12549 (2013)CrossRefGoogle Scholar
  60. 60.
    Z.H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 26, 4690–4696 (2014)CrossRefGoogle Scholar
  61. 61.
    Q. Liang, X. Yan, Y. Gu, K. Zhang, M. Liang, S. Lu et al., Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Sci. Rep. 5 (2015)Google Scholar
  62. 62.
    Y. Yang, H. Zhang, R. Liu, X. Wen, T.C. Hou, Z.L. Wang, Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 3, 1563–1568 (2013)CrossRefGoogle Scholar
  63. 63.
    J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi, Q. Jing et al., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9, 3324–3331 (2015)CrossRefGoogle Scholar
  64. 64.
    K.N. Kim, J. Chun, J.W. Kim, K.Y. Lee, J.-U. Park, S.-W. Kim et al., Highly stretchable two-dimensional fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 2015Google Scholar
  65. 65.
    W. Seung, M.K. Gupta, K.Y. Lee, K.-S. Shin, J.-H. Lee, T.Y. Kim et al., Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9, 3501–3509 (2015)CrossRefGoogle Scholar
  66. 66.
    P.K. Yang, L. Lin, F. Yi, X. Li, K.C. Pradel, Y. Zi et al., A flexible, stretchable and shape adaptive approach for versatile energy conversion and self powered biomedical monitoring. Adv. Mater. 27, 3817–3824 (2015)Google Scholar
  67. 67.
    Y. Yang, H. Zhang, Z.-H. Lin, Y.S. Zhou, Q. Jing, Y. Su et al., Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7, 9213–9222 (2013)CrossRefGoogle Scholar
  68. 68.
    B. Meng, W. Tang, Z.-H. Too, X. Zhang, M. Han, W. Liu et al., A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 6, 3235–3240 (2013)CrossRefGoogle Scholar
  69. 69.
    G. Zhu, W.Q. Yang, T. Zhang, Q. Jing, J. Chen, Y.S. Zhou et al., Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14, 3208–3213 (2014)CrossRefGoogle Scholar
  70. 70.
    Y.S. Zhou, G. Zhu, S. Niu, Y. Liu, P. Bai, Q. Jing et al., Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 26, 1719–1724 (2014)CrossRefGoogle Scholar
  71. 71.
    Y. Wu, Q. Jing, J. Chen, P. Bai, J. Bai, G. Zhu et al., A self-powered angle measurement sensor based on triboelectric nanogenerator. Adv. Funct. Mater. 25, 2166–2174 (2015)CrossRefGoogle Scholar
  72. 72.
    J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li, F. Yi et al., Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27, 1316–1326 (2015)CrossRefGoogle Scholar
  73. 73.
    J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang et al., Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25, 6094–6099 (2013)CrossRefGoogle Scholar
  74. 74.
    Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen et al., A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. Int. Ed. 52, 5065–5069 (2013)CrossRefGoogle Scholar
  75. 75.
    Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu et al., β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 8, 887–896 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations