Skip to main content

Theoretical Investigations on the Thermal Effects of VCSEL and Its Impact on the Frequency Response of Multimode Fiber Optic Link

  • Conference paper
  • First Online:
Innovations in Electronics and Communication Engineering

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 7))

  • 952 Accesses

Abstract

The temperature dependence of Vertical Cavity Surface Emitting Laser (VCSEL)’s frequency response and its impact on a multimode fiber optic link is investigated for Radio-over-fiber applications. The frequency response of a 863 nm, bottom emitting VCSEL is evaluated in the temperature range of 20–120 °C. The multimode fiber link bandwidth is determined under different VCSEL temperatures and link lengths. The maximum 3-dB bandwidth is found to be 2.46 GHz for a length of 0.2 km at a bias current and operating temperature of 10 mA and 100 °C, respectively. However, the link bandwidth reduces to 0.37 GHz for a length of 1 km at 100 °C. This study helps to identify the optimum MMF length at different VCSEL temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. VCSEL market growing at 21.9% from $781.6 m in 2015 to $2.1bn in 2020. http://www.semiconductor-today.com/news_items/2016/apr/bcc_070416.shtml

  2. Osinski M, Nakwaski W (1994) Thermal effects in vertical-cavity surface-emitting lasers. Int J High Speed Electron Syst 5(4):667–730

    Article  Google Scholar 

  3. Ganesh Madhan M, Vaya PR, Gunasekaran N (2001) An unified approach to study the thermal dynamics in multi longitudinal mode semiconductor lasers. Fiber Integr Opt 20(2):159–170

    Article  Google Scholar 

  4. Ganesh Madhan M, Neelakandan R (2008) An improved transmission line laser model for multimode laser diodes incorporating thermal effects. Opt Quantum Electron 40:535–550

    Article  Google Scholar 

  5. Koussalya B, Ganesh Madhan M (2009) Simulation of thermal effects in laser diode and its impact on high speed fiber optic link. J High Speed Netw 17(4):175–184

    Google Scholar 

  6. Murali Krishna K, Ganesh Madhan M (2016) Performance analysis of a low cost VCSEL transmitter based multimode fiber optic link for gigabit ethernet application. In: 5th IEEE international conference on communication and signal processing, pp 0227–0231

    Google Scholar 

  7. Hofmann W, Müller M, Nadtochiy A, Meltzer C, Mutig A, Böhm G, Rosskopf J, Bimberg D, Amann MC, Chang-Hasnain C (2009) 22-Gb/s long wavelength VCSELs. Opt Express 17(20):17547–17554

    Article  Google Scholar 

  8. Kuchta DM, Rylyakov AV, Schow CL, Proesel JE, Baks CW, Westbergh P, Gustavsson JS, Larsson A (2015) A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C. J Lightwave Technol 33(4):802–810

    Article  Google Scholar 

  9. Nazaruk DE, Blokhin SA, Maleev NA, Bobrov MA, Kuzmenkov AG, Vasil’ev AP, Gladyshev AG, Pavlov MM, Blokhin, AA, Kulagina MM, Vashanova KA, Zadiranov YM, Fefelov AG, Ustinov VM (2014) Single-mode temperature and polarization-stable high-speed 850 nm vertical cavity surface emitting lasers. In: 16th Russian youth conference on physics and astronomy, IOP Publishing Ltd., pp 1–6.

    Google Scholar 

  10. Müller M, Gründl T, Horn M, Nagel, RD, Wiedmeier W, Rönneberg E, Böhm G, Amann MC (2010) Small-signal analysis of high-temperature stable 1550 nm high-speed VCSELs. In: 6th joint symposium on opto- and microelectronic devices and circuits, pp 1–4

    Google Scholar 

  11. Mutig A, Fiol G, Pötschke K, Moser P, Arsenijevic D, Shchukin VA, Ledentsov NN, Mikhrin SS, Krestnikov IL, Livshits DA, Kovsh AR, Hopfer F, Bimberg D (2009) Temperature-dependent small-signal analysis of high-speed high temperature stable 980-nm VCSELs. IEEE J Sel Top Quantum Electron 15(3):679–686

    Article  Google Scholar 

  12. Mena PV, Morikuni JJ, Kang SM, Harton AV, Wyatt KW (1999) A comprehensive circuit-level model of vertical-cavity surface-emitting lasers. J Lightwave Technol 17(12):2612–2632

    Article  Google Scholar 

  13. Dutta AK, Kosaka H, Kurihara K, Sugimoto Y, Kasahara K (1998) High-speed VCSEL of modulation bandwidth over 7.0 GHz and its application to 100 m PCF datalink. J Lightwave Technol 16(5):870–875

    Article  Google Scholar 

  14. Thibeault BJ, Bertilsson K, Hegblom ER, Strzelecka E, Flyod PD, Naone R, Coldren LA (1997) High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers. IEEE Photonics Technol Lett 9(1):11–13

    Article  Google Scholar 

  15. Tian X, Wang Z, Gao J (2006) Thermal analysis based on rate-equation model for VCSELs. In: Proceedings on SPIE 6352, optoelectronic materials and devices, 63523L, pp 1–4

    Google Scholar 

  16. Facts—yes, you do need to read this, https://www.garlandtechnology.com/blog/fiber-facts-yes-you-do-need-to-read-this

  17. Mena PV, Morikuni JJ, Kang SM, Harton AV, Wyatt KW (1999) A simple rate-equation-based thermal VCSEL model. J Lightwave Technol 17:865–872

    Article  Google Scholar 

  18. Qi C, Shi X, Wang G (2011) High-order circuit-level thermal model of vertical-cavity surface-emitting lasers. IET Optoelectron 5(1):19–27

    Article  Google Scholar 

  19. Yuen R, Fernando XN, Krishnan S (2004) Radio over multimode fiber for wireless access. In: Canadian conference on electrical and computer engineering, vol 3, pp 1715–1718

    Google Scholar 

  20. Jeruchim MC, Balaban P, Sam Shanmugan K (2002) Simulation of communication systems modeling, methodology and techniques, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge DST, New Delhi, for providing financial support to carry out this research work under PURSE II scheme. One of the authors, Mr. K. Murali Krishna is thankful to DST, New Delhi, for the award of DST-PURSE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali Krishna Karunakaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karunakaran, M.K., Muthu, G.M. (2018). Theoretical Investigations on the Thermal Effects of VCSEL and Its Impact on the Frequency Response of Multimode Fiber Optic Link. In: Saini, H., Singh, R., Reddy, K. (eds) Innovations in Electronics and Communication Engineering . Lecture Notes in Networks and Systems, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-3812-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3812-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3811-2

  • Online ISBN: 978-981-10-3812-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics