On the Models of Three-Layered Plates and Shells with Thin Soft Core

Part of the Advanced Structured Materials book series (STRUCTMAT, volume 59)


We discuss here the mechanics of thin three-layered plates and shallow shells with thin soft core. Recently such thin-walled structures are widely used in engineering, among examples are laminated glasses and photovoltaic panels. We briefly consider layer-wise and first-order shear deformable plates and shells theories in order to model these structures.


First order shear deformable plate Layer-wise theory Three-layered plate Soft core Effective stiffness 



V.A.E. acknowledges the support by the Russian Science Foundation (grant number 15-19-10008).


  1. 1.
    Aşik, M.Z., Tezcan, S.: Laminated glass beams: strength factor and temperature effect. Comput. Struct. 84, 364–373 (2006)CrossRefGoogle Scholar
  2. 2.
    Chen, S., Zang, M., Xu, W.: A three-dimensional computational framework for impact fracture analysis of automotive laminated glass. Comput. Methods Appl. Mech. Eng. 294, 72–99 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ivanov, I.V.: Analysis, modelling, and optimization of laminated glasses as plane beam. Int. J. Solids Struct. 43, 6887–6907 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ivanov, I.V., Velchev, D.S., Georgiev, N.G., Ivanov, I.D., Sadowski, T.: A plate finite element for modelling of triplex laminated glass and comparison with other computational models. Meccanica 51(2), 341–358 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Koutsawa, Y., Daya, E.M.: Static and free vibration analysis of laminated glass beam on viscoelastic supports. Int. J. Solids Struct. 44, 8735–8750 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Liang, Y., Lancaster, F., Izzuddin, B.A.: Effective modelling of structural glass with laminated shell elements. Composi. Struct. 156, 47–62 (2016)CrossRefGoogle Scholar
  7. 7.
    Eitner, U., Köntges, M., Brendel, R.: Use of digital image correlation technique to determine thermomechanical deformations in photovoltaic laminates: measurements and accuracy. Sol. Energy Mater. Sol. Cells 94(8), 1346–1351 (2010)CrossRefGoogle Scholar
  8. 8.
    Schulze, S., Pander, M., Naumenko, K., Altenbach, H.: Analysis of laminated glass beams for photovoltaic applications. Int. J. Solids Struct. 49(15–16), 2027–2036 (2012)CrossRefGoogle Scholar
  9. 9.
    Weps, M., Naumenko, K., Altenbach, H.: Unsymmetric three-layer laminate with soft core for photovoltaic modules. Compos. Struct. 105, 332–339 (2013)CrossRefGoogle Scholar
  10. 10.
    Altenbach, H., Eremeyev, V.A.: Direct approach based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78(10), 775–794 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Altenbach, H., Eremeyev, V.A.: On the bending of viscoelastic plates made of polymer foams. Acta Mech. 204(3–4), 137–154 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Brank, B.: On boundary layer in the mindlin plate model: levy plates. Thin-Walled Struct. 46, 451–465 (2008)CrossRefGoogle Scholar
  13. 13.
    Eisenträger, J., Naumenko, K., Altenbach, H., Köppe, H.: Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels. Int. J. Mech. Sci. 96–97, 163–171 (2015)CrossRefGoogle Scholar
  14. 14.
    Naumenko, K., Altenbach, J., Altenbach, H., Naumenko, V.K.: Closed and approximate analytical solutions for rectangular Mindlin plates. Acta Mech. 147, 153–172 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Reddy, J.N., Wang, C.M.: An overview of the relationships between solutions of classical and shear deformation plate theories. Compos. Sci. Technol. 60, 2327–2335 (2000)CrossRefGoogle Scholar
  16. 16.
    Szilard, R.: Theories and Applications of Plate Analysis. Wiley, New Jersey (2004)CrossRefGoogle Scholar
  17. 17.
    Wang, C.M., Reddy, J.N., Lee, K.H.: Shear Deformable Beams and Shells. Elsevier, Amsterdam (2000)zbMATHGoogle Scholar
  18. 18.
    Carrera, E.: Historical review of Zig-Zag theories for multilayered plates and shells. Appl. Mech. Rev. 56(2), 287–308 (2003)CrossRefGoogle Scholar
  19. 19.
    Carrera, E., Brischetto, S., Nali, P.: Plates and Shells for Smart Structures: Classical and Advanced Theories for Modelling and Analysis. Wiley, Chichester (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Foraboschi, P.: Analytical model for laminated-glass plate. Compos. Part B Eng. 43(5), 2094–2106 (2012)CrossRefGoogle Scholar
  21. 21.
    Kulikov, G.M., Plotnikova, S.V.: Exact 3D stress analysis of laminated composite plates by sampling surfaces method. Compos. Struct. 94(12), 3654–3663 (2012)CrossRefGoogle Scholar
  22. 22.
    Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112, 283–291 (2014)CrossRefGoogle Scholar
  23. 23.
    Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E.: Accurate inter-laminar recovery for plates and doubly-curved shells with variable radii of curvature using layer-wise theories. Compos. Struct. 124, 368–393 (2015)CrossRefGoogle Scholar
  24. 24.
    Tornabene, F., Fantuzzi, N., Viola, E., Ferreira, A.: Radial basis function method applied to doubly-curved laminated composite shells and panels with a general higher-order equivalent single layer formulation. Compos. Part B Eng. 55, 642–659 (2013)CrossRefGoogle Scholar
  25. 25.
    Tornabene, F., Francesco, N., Viola, E.: Inter-laminar stress recovery procedure for doubly-curved, singly-curved, revolution shells with variable radii of curvature and plates using generalized higher-order theories and the local gdq method. Mech. Adv. Mater. Struct. 23(9), 1019–1045 (2016)CrossRefGoogle Scholar
  26. 26.
    Aßmus, M., Naumenko, K., Altenbach, H.: A multiscale projection approach for the coupled globallocal structural analysis of photovoltaic modules. Compos. Struct. 158, 340–358 (2016)CrossRefGoogle Scholar
  27. 27.
    Eisenträger, J., Naumenko, K., Altenbach, H., Meenen, J.: A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Compos. Struct. 133, 265–277 (2015)CrossRefGoogle Scholar
  28. 28.
    Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey (2010)CrossRefzbMATHGoogle Scholar
  29. 29.
    Altenbach, H., Eremeyev, V.: Eigen-vibrations of plates made of functionally graded material. Comput. Mater. Continua 9(2), 153–178 (2009)zbMATHGoogle Scholar
  30. 30.
    Altenbach, H., Eremeyev, V.A., Naumenko, K.: On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. ZAMM 95(10), 1004–1011 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Mathematics, Mechanics and Computer ScienceSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Rzeszów University of TechnologyRzeszówPoland
  3. 3.Institut für Mechanik, Otto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations