Acceleration Waves in Media with Microstructure

Part of the Advanced Structured Materials book series (STRUCTMAT, volume 59)


Within the unified approach to modelling of media with microstructure we discuss the propagation of acceleration waves. We describe a medium with microstructure as an elastic continuum with strain energy density which depends on deformations and additional internal variable and their first gradients. We use a Nth-order tensor as a kinematical descriptor of the microstructure. By acceleration wave we mean an isolated surface propagating in medium across which second derivatives of some fields undergo discontinuity jump. Here we formulate the conditions of existence of acceleration waves as algebraic inequality expressed using acoustic tensor.


Acceleration waves Media with microstructure Acoustic tensor Micropolar medium 



The author acknowledges the Russian Science Foundation (RSCF), for its support within the Project 15–19-10008.


  1. 1.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P., Rendón, L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bleach, G.P., Reddy, B.D.: The influence of constraints on the properties of acceleration waves in isotropic thermoelastic media. Arch. Ration. Mech. Anal. 98, 31–64 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    de Boer, R., Liu, Z.: Propagation of acceleration waves in incompressible saturated porous solids. Trans. Porous Media 21, 163–173 (1995)CrossRefGoogle Scholar
  4. 4.
    Capriz, G.: Continua with Microstructure. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chaboche, J.L.: Continuum damage mechanics: Part II Damage growth, crack initiation, and crack growth. J. Appl. Mech. 55(1), 65–72 (1988)CrossRefGoogle Scholar
  6. 6.
    Chen, P.J.: Growth of acceleration waves in isotropic elastic materials. J. Acoust. Soc. Am. 43, 982–987 (1968)CrossRefGoogle Scholar
  7. 7.
    Chen, P.J.: One dimensional acceleration waves in inhomogeneous elastic non-conductors. Acta Mech. 17, 17–24 (1973)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ciarletta, M., Straughan, B.: Poroacoustic acceleration waves. Philos. Trans. R. Soc. Lond. A 462, 3493–3499 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ciarletta, M., Straughan, B.: Poroacoustic acceleration waves. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 462(2075), 3493–3499 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ciarletta, M., Straughan, B.: Thermo-poroacoustic acceleration waves in elastic materials with voids. J. Math. Anal. Appl. 333(1), 142–150 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dietsche, A., Steinmann, P., Willam, K.: Micropolar elastoplasticity and its role in localization. Int. J. Plast. 9, 813–831 (1993)CrossRefzbMATHGoogle Scholar
  12. 12.
    Eremeyev, V.A.: Acceleration waves in micropolar elastic media. Dokl. Phys. 50(4), 204–206 (2005)CrossRefGoogle Scholar
  13. 13.
    Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Eremeyev, V.A., Lebedev, L.P., Rendón, L.: On the propagation of acceleration waves in thermoelastic micropolar medias. Revista Colombiana de Matemáticas 41(2), 397–406 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016)CrossRefGoogle Scholar
  16. 16.
    Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)CrossRefGoogle Scholar
  18. 18.
    Forest, S.: Micromorphic media. In: Altenbach, H., Eremeyev,V.A. (eds.) Generalized Continua from the Theory to Engineering Applications, CISM International Centre for Mechanical Sciences, vol. 541, pp. 249–300. Springer Vienna (2013)Google Scholar
  19. 19.
    Fu, Y.B., Scott, N.H.: The transistion from acceleration wave to shock wave. Int. J. Eng. Sci. 29, 617–624 (1991)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gorbushin, N., Mishuris, G.: Dynamic crack propagation along the interface with non-local interactions. J. Eur. Ceram. Soc. 36(9), 2241–2244 (2016)CrossRefGoogle Scholar
  21. 21.
    Hetnarski, R.B. (ed.): Encyclopedia of Thermal Stresses, vol. 1–11. Springer, Dordercht (2014)Google Scholar
  22. 22.
    Jordan, P.M.: Growth and decay of acoustic acceleration waves in Darcy-type porous media. Philos. Trans. R. Soc. Lond. A 461, 2749–2766 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kafadar, C.B., Eringen, A.C.: Micropolar media - I. The classical theory. Int. J. Eng. Sci. 9, 271–305 (1971)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey (2010)CrossRefzbMATHGoogle Scholar
  25. 25.
    Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin (1986)zbMATHGoogle Scholar
  26. 26.
    Loret, B., Simŏes, F.M.F., Martins, J.A.C.: Growth and decay of acceleration waves in non-associative elastic-plastic fluid-saturated porous media. Int. J. Solids Struct. 34, 1583–1608 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lubarda, V., Krajcinovic, D.: Damage tensors and the crack density distribution. Int. J. Solids Struct. 30(20), 2859–2877 (1993)CrossRefzbMATHGoogle Scholar
  28. 28.
    Maugin, G.A.: Acceleration waves in simple and linear viscoelastic micropolar materials. Int. J. Eng. Sci. 12, 143–157 (1974)CrossRefzbMATHGoogle Scholar
  29. 29.
    McCarthy, M.F., Tiersten, H.F.: One-dimensional acceleration waves and acoustoelectric domains in piezoelectric semiconductors. J. Appl. Phys. 47, 3389–3396 (1976)CrossRefGoogle Scholar
  30. 30.
    Mishuris, G., Movchan, A., Slepyan, L.: Waves and fracture in an inhomogeneous lattice structure. Waves Random Complex Media 17(4), 409–428 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodynam. 26(5), 639–681 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon-Press, Oxford (1986)zbMATHGoogle Scholar
  33. 33.
    Oden, J.T., Wellford, L.C.: J.: The finite element analysis of shocks and acceleration waves in nonlinearly elastic solids. The. Shock. Vib. Dig. 7, 2–11 (1975)Google Scholar
  34. 34.
    Ogden, R.W.: Growth and decay of acceleration waves in incompresible elastic solids. Q. J. Mech. Appl. Math. 37, 451–464 (1974)CrossRefGoogle Scholar
  35. 35.
    Ostoja-Starzewski, M., Trȩbicki, J.: On the growth and decay of acceleration waves in random media. Philos. Trans. R. Soc. Lond. A 455, 2577–2614 (1999)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Ostoja-Starzewski, M., Trȩbicki, J.: Stochastic dynamics of acceleration waves in random media. Mech. Mater. 38, 840–848 (2006)CrossRefGoogle Scholar
  37. 37.
    Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Pietraszkiewicz, W., Eremeyev, V.A.: On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int. J. Solids Struct. 46(11–12), 2477–2480 (2009)CrossRefzbMATHGoogle Scholar
  39. 39.
    Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Quiligotti, S., Maugin, G.A., dell’Isola, F.: Wave motions in unbounded poroelastic solids infused with compressible fluids. ZAMP 53(6), 1110–1138 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Saccomandi, G.: Acceleration waves in a thermo-microstretch fluid. Int. J. Non-linear Mech. 29, 809–817 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Scott, N.H.: Acceleration waves in constrained elastic materials. Arch. Ration. Mech. Analys. 58, 57–75 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Scott, N.H.: Acceleration waves in incompressible elastic solids. Q. J. Mech. Appl. Math. 29, 295–310 (1976)CrossRefzbMATHGoogle Scholar
  44. 44.
    Scott, N.H., Hayes, M.: Constant amplitude acceleration waves in a prestrained incompressible isotropic elastic solid. Math. Mech. Solids 2, 291–295 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Straughan, B.: Nonlinear waves in a general magnetic fluid. ZAMP 37, 274–279 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Straughan, B.: Stability and Wave Motion in Porous Media, vol. 165. Springer, New York (2008)zbMATHGoogle Scholar
  47. 47.
    Straughan, B.: Heat Waves. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  48. 48.
    Sumbatyan, M., Brigante, M.: Analysis of strength and wave velocity for micro-damaged elastic media. Eng. Fract. Mech. 145, 43–53 (2015)CrossRefGoogle Scholar
  49. 49.
    Truesdell, C.: Ration. Thermodyn., 2nd edn. Springer, New York (1984)Google Scholar
  50. 50.
    Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Mathematics, Mechanics and Computer ScienceSouthern Federal UniversityRostov-on-DonRussia
  2. 2.The Faculty of Mechanical EngineeringRzeszów University of TechnologyRzeszówPoland

Personalised recommendations