Skip to main content

Analytical and Computer Methods to Evaluate Mechanical Properties of the Metamaterials Based on Various Models of Polymeric Chains

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 59))

Abstract

The formation of polymer coating on a solid substrate is investigated by means of computer simulation (Monte-Carlo method). The sticking coefficient depending on different factors affecting the adhesion of monomer units is calculated. Mechanical properties are stimulated on the base of the hybrid discrete-continuous model, which describes the system consisting of flexible substrate and polymer coating. At different temperatures and intermolecular interactions constants, the dependencies of Young modulus on the deformation degree are calculated. Ferroelectric properties of the polymer coating depending on frequency and amplitude of external electric field, temperature and interchain interactions are investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bhushan, B., Jung, Y.: Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater Sci. 56, 1–108 (2011)

    Article  Google Scholar 

  2. Bico, J., Thiele, U., Quere, D.: Wetting of textured surfaces. Colloid Surf. A Physicochem. Eng. Asp. 206(1–3), 41–46 (2002)

    Article  Google Scholar 

  3. Boinovich, L.B., Emelyanenko, A.M.: Russ. Chem. Rev. 77(7), 583 (2008)

    Article  Google Scholar 

  4. Callies, M., Quere, D.: On water repellency. Soft Matter 1(1), 55–61 (2005)

    Article  Google Scholar 

  5. Kushch, V.I., Chernobai, V.S., Mishuris, G.S.: Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int. J. Eng. Sci. 84, 79–94 (2014)

    Article  Google Scholar 

  6. Zheng, L., Wu, X., Lou, Z., et al.: Superhydrophobicity from microstructured surface. Chin. Sci. Bull. 49, 1779–1787 (2004)

    Article  Google Scholar 

  7. Lisichkina G.V.: Chemistry of grafted of the surface compounds. FIZMATLIT, Moscow (2003)

    Google Scholar 

  8. Shirtcliffe, N., McHale, G., Atherton, S., et al.: An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 161, 124–138 (2010)

    Article  Google Scholar 

  9. Zhang, X., Shi, F., Niu, J., et al.: Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 18, 621–633 (2008)

    Article  Google Scholar 

  10. Ageev, A.A., Aksenova, I.V., Volkov, V.A., Eleev, A.F.: About fluorine-containing surface-active substances capable to modify polymer fabrics’ fibers. Fluorine Notes 4(83), 5–6 (2012)

    Google Scholar 

  11. Rigoberto, C.A., et al.: Polymer Brushes: Synthesis, Characterization, Applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

    Google Scholar 

  12. Birstein, T.M.: The polymer brushes. Soros Educ. J. 5, 42–47 (1999)

    Google Scholar 

  13. Mamonova, M.V., Prudnikov, V.V., Prudnikova, V.V., Prudnikova, I.A.: The theoretical and experimental methods in surface physics, Omsk (2009)

    Google Scholar 

  14. Oura, K., Lifschic, V.G., Sarznin, A.A., Zotov, A.V., Katayama, M.: Introduction to Surface Physics, Moscow, Nauka, p. 496 (2006)

    Google Scholar 

  15. Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behavior of a piezoelectric ring. Phys. Status Solid. B 243(4), 22–24 (2006)

    Article  Google Scholar 

  16. Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. EPL 91, 56007 (2010)

    Article  Google Scholar 

  17. Yan, Z., Jiang, L.Y.: Surface effects on the electromechanical coupling and bending behaviors of piezoelectric nanowires. J. Phys. D Appl. Phys. 44, 075404 (2011)

    Article  Google Scholar 

  18. Yan, Z., Jiang, L.Y.: Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc. R. Soc. A 468, 3458–3475 (2012)

    Article  MathSciNet  Google Scholar 

  19. Zhang, J., Wang, Ch., Adhikari, S.: Surface effect on the buckling of piezoelectric nanofilms. J. Phys. D Appl. Phys. 45, 285301 (2012)

    Article  Google Scholar 

  20. Pan, X.H., Yu, S.W., Feng, X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China: Phys., Mech. Astron. 54(4), 564–573 (2011)

    Google Scholar 

  21. Yan, Z., Jiang, L.: Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. J. Phys. D Appl. Phys. 44, 365301 (2011)

    Article  Google Scholar 

  22. Yan, Z., Jiang, L.: Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. J. Phys. D Appl. Phys. 45, 255401 (2012)

    Article  Google Scholar 

  23. Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90(3), 231–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM. 91(9), 699–710 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eremeyev, V.A., Lebedev, L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204–217 (2013)

    Article  MathSciNet  Google Scholar 

  26. Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann-Ogden model of surface elasticity. Continuum Mech. Thermodyn. 28(1–2), 407–422 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schiavone, P., Ru, C.Q.: Solvability of boundary value problems in a theory of plane–strain elasticity with boundary reinforcement. Int. J. Eng. Sci. 47, 1331–1338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nasedkin, A.V., Eremeyev, V.A.: Spectral properties of piezoelectric bodies with surface effects. In: Surface Effects in Solid Mechanics, pp. 105–121. Springer (2013)

    Google Scholar 

  29. Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878–892 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nasedkin, A.V., Eremeyev, V.A.: Some models for nanosized magnetoelectric bodies with surface effects. In: Advanced Materials, pp. 373–391. Springer (2016)

    Google Scholar 

  31. Binder, К.: Monte-Carlo Methods in Statistical Physics. Mir, Moscow (1982)

    Google Scholar 

  32. Binder, К., Heermann, D.W.: Monte-Carlo Simulation in Statistical Physics, 5th edn. Springer Heidelberg, Dordrecht, London, NY (2010)

    Google Scholar 

  33. Multer-Krumbhaar, H., Burkhardt, T.W., Kroll, D.: A generalized kinetic equation for crystal growth. J. Cryst. Growth. 38 (1977)

    Google Scholar 

  34. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

    Article  Google Scholar 

  35. Bogdanova, YuG: The Adhesion and its Role in the Strength of Polymer Composites. Moscow University Press, Moscow (2010)

    Google Scholar 

  36. Pratton, M.: Introduction to Surface Physics, p. 256. Izhevsk, NIC RHD (2000)

    Google Scholar 

  37. Roldugin, V.I.: Physical Chemistry of Surface, p. 586. Dolgoprudnyy, Intellect (2008)

    Google Scholar 

  38. Vaz, C.A.F., Bland, J.A.C., Lauhoff, G.: Magnetism in ultrathin film structures. Rep. Prog. Phys. 71 (2008)

    Google Scholar 

  39. Lipatov, Y.S.: The Colloidal Polymer Physics, p. 344. Kiev, Nauka, Dumka (1984)

    Google Scholar 

  40. Berlin, A.A., Basin, V.E.: Fundamentals of Polymer Adhesion, p. 319. AM, Chemistry (1969)

    Google Scholar 

  41. Proutorov, E.V., Maksimova, O.G., Maksimov, A.V.: Simulation of the adhesion contact on the interface of polymer-metal. J. Phys: Conf. Ser. 633, 012044 (2015)

    Google Scholar 

  42. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (1987)

    MATH  Google Scholar 

  43. Binder, K., Levek, D., Weiss, J., et al.: Monte-Carlo Methods in Statistical Physics. Springer, Berlin (1979)

    Book  Google Scholar 

  44. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953)

    Article  Google Scholar 

  45. Yakovlev, A.D.: Chemicals and Coatings Technology, p. 448. SPb., HIMIZDAT (2008)

    Google Scholar 

  46. Gerasimov, R.A., Maksimov, A.V., Petrova, T.O., Maksimova, O.G.: Ordering and the relaxation properties of macromolecules in ferroelectric polymer films. Phys. Solid State 54(5), 1002–1004 (2012)

    Article  Google Scholar 

  47. Gerasimov, R.A., Eremeyev, V.A., Petrova, T.O., Egorov, V.I., Maksimova, O.G., Maksimov, A.V.: Computer simulation of the mechanical properties of metamaterials. J. Phys: Conf. Ser. 738(1), 012100 (2016)

    Google Scholar 

  48. Gotlib, Y.Y., Maximov, A.V.: A theory of orientational ordering in two-dimemsional multichain polymer systems with dipole interaction. Polym. Sci. A 34(11), 902–907 (1992)

    Google Scholar 

  49. Maksimov, A.V., Pavlov, G.M.: The molecular orientational order in surface layers of polymer films. Polym. Sci. A 49(7), 828–836 (2007)

    Article  Google Scholar 

  50. Maksimov, A.V., Gerasimov, R.A.: Anisotropic models of polymer ferroelectrics. Phys. Solid State 51(7), 1365–1369 (2009)

    Article  Google Scholar 

  51. Maksimov, A.V., Gerasimov, R.A., Maksimova, O.G.: Ordering and large-scale relaxation properties of macromolecules in ferroelectric polymer films. Ferroelectrics 432(1), 32–40 (2012)

    Article  Google Scholar 

  52. Petrova, T.O., Maksimova, O.G., Gerasimov, R.A., Maksimov, A.V.: Application of analytical and numerical methods to simulation of systems with orientation interactions. Phys. Solid State 54(5), 937–939 (2012)

    Article  Google Scholar 

  53. Maksimova, O.G., Maksimov, A.V.: Orientational order in two-dimensional polymer systems as described in terms of the Vaks-Larkin model. Polym. Sci. A 45(9), 1476–1485 (2003)

    Google Scholar 

  54. Bakingem, E.: Basic theory of intermolecular forces. Application to the small molecules. In: Pullman, B. (ed.) Intermolecular interactions: from diatomic molecules to biopolymers, pp. 9–98. Moscow, Mir (1981)

    Google Scholar 

  55. Askadskii, A.A.: Deformation of Polymers. Khimiya, Moscow (1973)

    Google Scholar 

  56. Cui Lian, XuXu, JiXin, Che, Zelong, He, Huijie, Xue, Tianquan, Lv: Properties of phase transformation of ferroelectric thin films with surface layers. J. Mod. Phys. 2, 1037–1040 (2011)

    Article  Google Scholar 

  57. Landau, L.D.: Theoretical Physics. Nauka. VIII, Moscow (1982)

    Google Scholar 

  58. Sonin, A.S.: Introduction to the Physics of Liquid Crystals. Nauka, Moscow (1983)

    Google Scholar 

  59. Landau, L.D., Lifschic, E.M.: Statistical Physics. Nauka. V, Moscow (1976)

    Google Scholar 

  60. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  61. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solid. Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  62. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Aref, H., Van der Giessen, E. (eds.) Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier, Amsterdam (2008)

    Google Scholar 

  64. Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterpartsby surface modification. Acta Mater. 54, 2983–2990 (2006)

    Article  Google Scholar 

  65. Eremeyev, V.A.: On effective properties of materials at the nano- and microscalesconsidering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importanceof surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65, 010802–1–31 (2012)

    Google Scholar 

  67. Zhu, H.X., Wang, J.X., Karihaloo, B.L.: Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. J. Mech. Mater. Struct. 4, 589–604 (2009)

    Article  Google Scholar 

  68. Chen, C., Shi, Y., Zhang, Y., Zhu, J., Yan, Y.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)

    Article  Google Scholar 

  69. Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)

    Article  Google Scholar 

  70. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409–6 (2006)

    Google Scholar 

  71. Kim, C., Ru, C., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18, 59–66 (2013)

    Article  MathSciNet  Google Scholar 

  72. Kim, C.I., Schiavone, P., Ru, C.Q.: Effect of surface elasticity on an interface crack in plane deformations. Proc. R. Soc. A 467, 3530–3549 (2011)

    Google Scholar 

  73. Mishuris, G.S.: Interface crack and nonideal interface concept (Mode III). Int. J. Fract. 107, 279–296 (2001)

    Article  Google Scholar 

  74. Mishuris, G.S., Kuhn, G.: Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonidealinterface. ZAMM 81, 811–826 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  75. Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  76. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000)

    Article  Google Scholar 

  77. Sfyris, D., Sfyris, G., Galiotis, C.: Curvature dependent surface energy for a free standing monolayer graphene: someclosed form solutions of the non-linear theory. Int. J. Non-Linear Mech. 67, 186–197 (2014)

    Article  Google Scholar 

  78. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  Google Scholar 

  79. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453, 853–877 (1997)

    Google Scholar 

  80. Steigmann, D.J., Ogden, R.W.: Elastic surface–substrate interactions. Proc. R. Soc. A 455, 437–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  81. Povstenko, Y.: Mathematical modeling of phenomena caused by surface stresses in solids. In: Altenbach, H., Morozov, N.F. (eds.) Surface Effects in Solid Mechanics, pp. 135–153. Springer, Berlin (2013)

    Chapter  Google Scholar 

  82. Rubin, M., Benveniste, Y.: A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52, 1023–1052 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  83. dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804-060804-21 (2016)

    Google Scholar 

  84. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. Roy. Soc. A 472(2185) (2016). doi:10.1098/rspa.2015.0790

    Google Scholar 

  85. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67(3), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  86. Scerrato, D., Zhurba Eremeeva, I. A., Lekszycki, T., and Rizzi, N. L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets, Z. Angew. Math. Mech. (2016). doi:10.1002/zamm.201600066

    Google Scholar 

  87. Leonova, T.M., Kastro, R.A.: The dielectric properties of the MIS structures based on aluminum oxide. Materials of the XII-th International Conference “Physics of Dielectrics”, St. Petersburg (2011)

    Google Scholar 

Download references

Acknowledgements

The work is performed within the framework of the project “Methods of microstructural nonlinear analysis, wave dynamics and mechanics of composites for research and design of modern metamaterials and elements of structures made on its base” (grant №15-19-10008 of by the Russian Science Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman A. Gerasimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gerasimov, R.A., Maksimova, O.G., Petrova, T.O., Eremeyev, V.A., Maksimov, A.V. (2017). Analytical and Computer Methods to Evaluate Mechanical Properties of the Metamaterials Based on Various Models of Polymeric Chains. In: Sumbatyan, M. (eds) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials . Advanced Structured Materials, vol 59. Springer, Singapore. https://doi.org/10.1007/978-981-10-3797-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3797-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3796-2

  • Online ISBN: 978-981-10-3797-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics