Skip to main content

Mathematical Models and Finite Element Approaches for Nanosized Piezoelectric Bodies with Uncoulped and Coupled Surface Effects

  • Chapter
  • First Online:
Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 59))

Abstract

In this chapter the dynamic problems for piezoelectric nanosized bodies with account for coupled damping and surface effects are considered. For these problems we propose new mathematical model which generalizes the models of the elastic medium with damping in sense of the Rayleigh approach and with surface effects for the cases of piezoelectric materials. Our model of attenuation and surface effects has coupling properties between mechanical and electric fields, both for the damping terms and constitutive equations for piezoelectric materials on the surface. For solving the problems stated the finite element approximations are discussed. A set of effective finite element schemes is examined for finding numerical solutions of week statements for nonstationary problems, steady-state oscillation problems, modal problems and static problems within the framework of modelling of piezoelectric nanosized materials with damping and surface effects. For transient and harmonic problems, we demonstrate that the proposed models allow the use of the mode superposition method. In addition, we note that for transient and static problems we can use efficient finite element algorithms for solving the systems of linear algebraic equations with symmetric quasi-definite matrices both in the case of uncoupled surface effects and in the case of coupled surface effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90(3), 231–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91(9), 699–710 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belokon, A.V., Nasedkin, A.V., Soloviev, A.N.: New schemes for the finite-element dynamic analysis of piezoelectric devices. J. Applied Math. Mech. (PMM) 66(3), 481–490 (2002)

    Article  Google Scholar 

  4. Berlincourt, D.A., Curran, D.R., Jaffe, H.: Piezoelectric and piezomagnetic materials. Physical Acoustics. Part A, vol. 1, pp. 233–256. Academic Press, NY (1964)

    Google Scholar 

  5. Chen, T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)

    Article  MATH  Google Scholar 

  6. Chen, W.Q.: Surface effect on Bleustein-Gulyaev wave in a piezoelectric half-space. Theoret. Appl. Mech. Lett. 1, 041001 (2011)

    Article  Google Scholar 

  7. Dai, Sh., Gharbi, M., Sharma, P., Park, H.S.: Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. J. Appl. Phys. 110, 104305-1–104305-7 (2011)

    Google Scholar 

  8. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008)

    Google Scholar 

  9. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eremeyev, V.A., Lebedev, L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204–217 (2013)

    Article  MathSciNet  Google Scholar 

  11. Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann-Ogden model of surface elasticity. Continuum Mech. Therm. 28(1–2), 407–422 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eremeev, V.A., Nasedkin, A.V.: Natural vibrations of nanodimensional piezoelectric bodies with contact-type boundary conditions. Mech. Solids 50(5), 495–507 (2015)

    Article  Google Scholar 

  13. Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016)

    Article  Google Scholar 

  14. Fan, H., Yang, J., Xu, L.: Piezoelectric waves near an imperfectly bonded interface between two half-spaces. Appl. Phys. Lett. 88(20), 203509 (2006)

    Article  Google Scholar 

  15. Gu, S.-T., He, Q.C., Pensée, V.: Homogenization of fibrous piezoelectric composites with general imperfect interfaces under anti-plane mechanical and in-plane electrical loadings. Mech. Mater. 88, 12–29 (2015)

    Article  Google Scholar 

  16. Gu, S.-T., Liu, J.-T.: He. Q.-C.: Piezoelectric composites: imperfect interface models, weak formulations and benchmark problems. Comp. Mater. Sci. 94, 182–190 (2014)

    Google Scholar 

  17. Gu, S.-T., Liu, J.-T.: He. Q.-C.: The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int. J. Eng. Sci. 85, 31–46 (2014)

    Article  Google Scholar 

  18. Gu, S.-T., Qin, L.: Variational principles and size-dependent bounds for piezoelectric inhomogeneous materials with piezoelectric coherent imperfect interfaces. Int. J. Eng. Sci. 78, 89–102 (2014)

    Article  MathSciNet  Google Scholar 

  19. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hamilton, J.C., Wolfer, W.G.: Theories of surface elasticity for nanoscale objects. Surf. Sci. 603, 1284–1291 (2009)

    Article  Google Scholar 

  21. Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi B 243(4), R22–R24 (2006)

    Article  Google Scholar 

  22. Kim, C., Ru, C., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18(1), 59–66 (2013)

    Article  MathSciNet  Google Scholar 

  23. Kim, C.I., Schiavone, P., Ru, C.Q.: Effect of surface elasticity on an interface crack in plane deformations. Proc. R. Soc. A. 467(2136), 3530–3549 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kushch, V.I., Chernobai, V.S., Mishuris, G.S.: Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int. J. Eng. Sci. 84, 79–94 (2014)

    Article  Google Scholar 

  25. Malakooti, M.H., Sodano, H.A.: Multi-Inclusion modeling of multiphase piezoelectric composites. Compos. Part B 47, 181–189 (2013)

    Article  Google Scholar 

  26. Nasedkin, A.V.: Some finite element methods and algorithms for solving acousto-piezoelectric problems. In: Parinov, I.A. (ed.) Piezoceramic Materials and Devices, pp. 177–218. Nova Science Publications, NY (2010)

    Google Scholar 

  27. Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878–892 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nasedkin, A.V., Eremeyev, V.A.: Modeling of nanosized piezoelectric and magnetoelectric bodies with surface effects. AIP Conf. Proc. 1627, 70–75 (2014)

    Article  MATH  Google Scholar 

  29. Nasedkin, A.V., Eremeyev, V.A.: Some models for nanosized magnetoelectric bodies with surface effects. In: Parinov, I.A., Chang, S.-H., Topolov, V.Y. (eds.) Advanced Materials-Manufacturing, Physics, Mechanics and Applications, Springer Proceedings in Physics, vol. 175, pp. 373–391. Springer, Heidelberg (2016)

    Google Scholar 

  30. Pan, X.H., Yu, S.W., Feng, X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China Phys. Mech. Astron. 54(4), 564–573 (2011)

    Article  Google Scholar 

  31. Park, H.S., Devel, M., Wang, Z.: A new multiscale formulation for the electromechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 200, 2447–2457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface-tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schiavone, P., Ru, C.Q.: Solvability of boundary value problems in a theory of plane-strain elasticity with boundary reinforcement. Int. J. Eng. Sci. 47(11), 1331–1338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shuttleworth, R.: The surface tension of solid. Proc. Phys. Soc. A 63, 444–457 (1950)

    Article  Google Scholar 

  35. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453(1959), 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455(1982), 437–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. EPL (Lett. J. Explor. Front. Phys.) 91(5), 56007 (2010)

    Google Scholar 

  38. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sinica 24(1), 52–82 (2011)

    Article  Google Scholar 

  39. Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sinica 32(1), 83–100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, W., Li, P., Jin, F.: Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications. Smart Mater. Struct. 25(9), 095026 (2016)

    Article  Google Scholar 

  41. Wang, Z., Zhu, J., Jin, X.Y., Chen, W.Q., Zhang, Ch.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids 65, 138–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech. 222(1–2), 59–67 (2011)

    Article  MATH  Google Scholar 

  43. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Evaluation of effective electroelastic properties of piezoelectric coated nano-inclusion composites with interface effect under antiplane shear. Int. J. Eng. Sci. 69, 61–68 (2013)

    Article  Google Scholar 

  44. Yan, Z., Jiang, L.Y.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D Appl. Phys. 44, 075404 (2011)

    Article  Google Scholar 

  45. Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22, 245703 (2011)

    Article  Google Scholar 

  46. Yan, Z., Jiang, L.Y.: Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. J. Phys. D Appl. Phys. 44, 365301 (2011)

    Article  Google Scholar 

  47. Yan, Z., Jiang, L.Y.: Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. J. Phys. D Appl. Phys. 45, 255401 (2012)

    Article  Google Scholar 

  48. Yan, Z., Jiang, L.Y.: Surface effects on the vibration and buckling of piezoelectric nanoplates. EPL (Europhys. Lett.) 99(2), 27007 (2012)

    Google Scholar 

  49. Yan, Z., Jiang, L.Y.: Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc. R. Soc. A 468, 3458–3475 (2012)

    Article  MathSciNet  Google Scholar 

  50. Zienkewicz, O.C., Morgan, K.: Finite Elements and Approximation. Wiley, NY (1983)

    Google Scholar 

  51. Zhang, C., Chen, W., Zhang, C.: On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Phys. Lett. A 376, 3281–3286 (2012)

    Article  Google Scholar 

  52. Zhang, C., Chen, W., Zhang, C.: Two-dimensional theory of piezoelectric plates considering surface effect. Eur. J. Mech. A. Solids 41, 50–57 (2013)

    Article  MathSciNet  Google Scholar 

  53. Zhang, J., Wang, Ch., Adhikari, S.: Surface effect on the buckling of piezoelectric nanofilms. J. Phys. D Appl. Phys. 45, 285301 (2012)

    Article  Google Scholar 

  54. Zhang, L.L., Liu, J.X., Fang, X.Q., Nie, G.Q.: Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Phys. E 57, 169–174 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (grant number 15-19-10008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Eremeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Eremeyev, V.A., Nasedkin, A.V. (2017). Mathematical Models and Finite Element Approaches for Nanosized Piezoelectric Bodies with Uncoulped and Coupled Surface Effects. In: Sumbatyan, M. (eds) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials . Advanced Structured Materials, vol 59. Springer, Singapore. https://doi.org/10.1007/978-981-10-3797-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3797-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3796-2

  • Online ISBN: 978-981-10-3797-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics