Mathematical Models and Finite Element Approaches for Nanosized Piezoelectric Bodies with Uncoulped and Coupled Surface Effects

  • Victor A. EremeyevEmail author
  • A. V. Nasedkin
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 59)


In this chapter the dynamic problems for piezoelectric nanosized bodies with account for coupled damping and surface effects are considered. For these problems we propose new mathematical model which generalizes the models of the elastic medium with damping in sense of the Rayleigh approach and with surface effects for the cases of piezoelectric materials. Our model of attenuation and surface effects has coupling properties between mechanical and electric fields, both for the damping terms and constitutive equations for piezoelectric materials on the surface. For solving the problems stated the finite element approximations are discussed. A set of effective finite element schemes is examined for finding numerical solutions of week statements for nonstationary problems, steady-state oscillation problems, modal problems and static problems within the framework of modelling of piezoelectric nanosized materials with damping and surface effects. For transient and harmonic problems, we demonstrate that the proposed models allow the use of the mode superposition method. In addition, we note that for transient and static problems we can use efficient finite element algorithms for solving the systems of linear algebraic equations with symmetric quasi-definite matrices both in the case of uncoupled surface effects and in the case of coupled surface effects.


Surface elasticity Piezoelectricity Finite element method Rayleigh damping 



This work was supported by the Russian Science Foundation (grant number 15-19-10008).


  1. 1.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90(3), 231–240 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91(9), 699–710 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Belokon, A.V., Nasedkin, A.V., Soloviev, A.N.: New schemes for the finite-element dynamic analysis of piezoelectric devices. J. Applied Math. Mech. (PMM) 66(3), 481–490 (2002)CrossRefGoogle Scholar
  4. 4.
    Berlincourt, D.A., Curran, D.R., Jaffe, H.: Piezoelectric and piezomagnetic materials. Physical Acoustics. Part A, vol. 1, pp. 233–256. Academic Press, NY (1964)Google Scholar
  5. 5.
    Chen, T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, W.Q.: Surface effect on Bleustein-Gulyaev wave in a piezoelectric half-space. Theoret. Appl. Mech. Lett. 1, 041001 (2011)CrossRefGoogle Scholar
  7. 7.
    Dai, Sh., Gharbi, M., Sharma, P., Park, H.S.: Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. J. Appl. Phys. 110, 104305-1–104305-7 (2011)Google Scholar
  8. 8.
    Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008)Google Scholar
  9. 9.
    Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eremeyev, V.A., Lebedev, L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204–217 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann-Ogden model of surface elasticity. Continuum Mech. Therm. 28(1–2), 407–422 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eremeev, V.A., Nasedkin, A.V.: Natural vibrations of nanodimensional piezoelectric bodies with contact-type boundary conditions. Mech. Solids 50(5), 495–507 (2015)CrossRefGoogle Scholar
  13. 13.
    Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016)CrossRefGoogle Scholar
  14. 14.
    Fan, H., Yang, J., Xu, L.: Piezoelectric waves near an imperfectly bonded interface between two half-spaces. Appl. Phys. Lett. 88(20), 203509 (2006)CrossRefGoogle Scholar
  15. 15.
    Gu, S.-T., He, Q.C., Pensée, V.: Homogenization of fibrous piezoelectric composites with general imperfect interfaces under anti-plane mechanical and in-plane electrical loadings. Mech. Mater. 88, 12–29 (2015)CrossRefGoogle Scholar
  16. 16.
    Gu, S.-T., Liu, J.-T.: He. Q.-C.: Piezoelectric composites: imperfect interface models, weak formulations and benchmark problems. Comp. Mater. Sci. 94, 182–190 (2014)Google Scholar
  17. 17.
    Gu, S.-T., Liu, J.-T.: He. Q.-C.: The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int. J. Eng. Sci. 85, 31–46 (2014)CrossRefGoogle Scholar
  18. 18.
    Gu, S.-T., Qin, L.: Variational principles and size-dependent bounds for piezoelectric inhomogeneous materials with piezoelectric coherent imperfect interfaces. Int. J. Eng. Sci. 78, 89–102 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hamilton, J.C., Wolfer, W.G.: Theories of surface elasticity for nanoscale objects. Surf. Sci. 603, 1284–1291 (2009)CrossRefGoogle Scholar
  21. 21.
    Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi B 243(4), R22–R24 (2006)CrossRefGoogle Scholar
  22. 22.
    Kim, C., Ru, C., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18(1), 59–66 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kim, C.I., Schiavone, P., Ru, C.Q.: Effect of surface elasticity on an interface crack in plane deformations. Proc. R. Soc. A. 467(2136), 3530–3549 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kushch, V.I., Chernobai, V.S., Mishuris, G.S.: Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int. J. Eng. Sci. 84, 79–94 (2014)CrossRefGoogle Scholar
  25. 25.
    Malakooti, M.H., Sodano, H.A.: Multi-Inclusion modeling of multiphase piezoelectric composites. Compos. Part B 47, 181–189 (2013)CrossRefGoogle Scholar
  26. 26.
    Nasedkin, A.V.: Some finite element methods and algorithms for solving acousto-piezoelectric problems. In: Parinov, I.A. (ed.) Piezoceramic Materials and Devices, pp. 177–218. Nova Science Publications, NY (2010)Google Scholar
  27. 27.
    Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878–892 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Nasedkin, A.V., Eremeyev, V.A.: Modeling of nanosized piezoelectric and magnetoelectric bodies with surface effects. AIP Conf. Proc. 1627, 70–75 (2014)CrossRefzbMATHGoogle Scholar
  29. 29.
    Nasedkin, A.V., Eremeyev, V.A.: Some models for nanosized magnetoelectric bodies with surface effects. In: Parinov, I.A., Chang, S.-H., Topolov, V.Y. (eds.) Advanced Materials-Manufacturing, Physics, Mechanics and Applications, Springer Proceedings in Physics, vol. 175, pp. 373–391. Springer, Heidelberg (2016)Google Scholar
  30. 30.
    Pan, X.H., Yu, S.W., Feng, X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China Phys. Mech. Astron. 54(4), 564–573 (2011)CrossRefGoogle Scholar
  31. 31.
    Park, H.S., Devel, M., Wang, Z.: A new multiscale formulation for the electromechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 200, 2447–2457 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface-tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schiavone, P., Ru, C.Q.: Solvability of boundary value problems in a theory of plane-strain elasticity with boundary reinforcement. Int. J. Eng. Sci. 47(11), 1331–1338 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Shuttleworth, R.: The surface tension of solid. Proc. Phys. Soc. A 63, 444–457 (1950)CrossRefGoogle Scholar
  35. 35.
    Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453(1959), 853–877 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455(1982), 437–474 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. EPL (Lett. J. Explor. Front. Phys.) 91(5), 56007 (2010)Google Scholar
  38. 38.
    Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sinica 24(1), 52–82 (2011)CrossRefGoogle Scholar
  39. 39.
    Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sinica 32(1), 83–100 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wang, W., Li, P., Jin, F.: Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications. Smart Mater. Struct. 25(9), 095026 (2016)CrossRefGoogle Scholar
  41. 41.
    Wang, Z., Zhu, J., Jin, X.Y., Chen, W.Q., Zhang, Ch.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids 65, 138–156 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech. 222(1–2), 59–67 (2011)CrossRefzbMATHGoogle Scholar
  43. 43.
    Xiao, J.H., Xu, Y.L., Zhang, F.C.: Evaluation of effective electroelastic properties of piezoelectric coated nano-inclusion composites with interface effect under antiplane shear. Int. J. Eng. Sci. 69, 61–68 (2013)CrossRefGoogle Scholar
  44. 44.
    Yan, Z., Jiang, L.Y.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D Appl. Phys. 44, 075404 (2011)CrossRefGoogle Scholar
  45. 45.
    Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22, 245703 (2011)CrossRefGoogle Scholar
  46. 46.
    Yan, Z., Jiang, L.Y.: Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. J. Phys. D Appl. Phys. 44, 365301 (2011)CrossRefGoogle Scholar
  47. 47.
    Yan, Z., Jiang, L.Y.: Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. J. Phys. D Appl. Phys. 45, 255401 (2012)CrossRefGoogle Scholar
  48. 48.
    Yan, Z., Jiang, L.Y.: Surface effects on the vibration and buckling of piezoelectric nanoplates. EPL (Europhys. Lett.) 99(2), 27007 (2012)Google Scholar
  49. 49.
    Yan, Z., Jiang, L.Y.: Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc. R. Soc. A 468, 3458–3475 (2012)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zienkewicz, O.C., Morgan, K.: Finite Elements and Approximation. Wiley, NY (1983)Google Scholar
  51. 51.
    Zhang, C., Chen, W., Zhang, C.: On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Phys. Lett. A 376, 3281–3286 (2012)CrossRefGoogle Scholar
  52. 52.
    Zhang, C., Chen, W., Zhang, C.: Two-dimensional theory of piezoelectric plates considering surface effect. Eur. J. Mech. A. Solids 41, 50–57 (2013)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Zhang, J., Wang, Ch., Adhikari, S.: Surface effect on the buckling of piezoelectric nanofilms. J. Phys. D Appl. Phys. 45, 285301 (2012)CrossRefGoogle Scholar
  54. 54.
    Zhang, L.L., Liu, J.X., Fang, X.Q., Nie, G.Q.: Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Phys. E 57, 169–174 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Mathematics, Mechanics and Computer ScienceSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Rzeszów University of TechnologyRzeszówPoland

Personalised recommendations