Advertisement

Biofuels pp 51-67 | Cite as

Biomass-Derived HMF Oxidation with Various Oxidants

  • S. SaravanamuruganEmail author
  • Ashok Pandey
  • Rajender Singh Sangwan
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter describes the conversion of cellulosic biomass-derived 5-hydroxymethylfurfural (HMF) to various oxidation products, such as 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), and 5-formyl-2-furancarboxylic acid (FFCA), with solid catalysts containing with and without metal(s) in the presence of various solvents including water. This chapter further describes the influence of various oxidant, such as hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BuOOH), air, and molecular oxygen, on the yield of oxidation products under wide range of reaction conditions. This chapter also focuses the influence of metal nanoparticles on the yield of FDCA with and without addition of organic bases.

Keywords

Oxygen Flow Rate Nitrogen Dope Graphene Quantitative Conversion Furanic Compound Methyl Isobutyl Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Albonetti S, Pasinia T, Lolli A et al (2012) Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: effect of Au/Cu ratio. Catal Today 195:120–126CrossRefGoogle Scholar
  2. 2.
    Antonyraj CA, Jeong J, Kim B et al (2013) Selective oxidation of HMF to DFF using Ru/g-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19:1056–1059CrossRefGoogle Scholar
  3. 3.
    Antonyraj CA, Kim B, Kim Y et al (2014) Heterogeneous selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-diformylfuran catalyzed by vanadium supported activated carbon in MIBK, extracting solvent for HMF. Catal Commun 57:64–68CrossRefGoogle Scholar
  4. 4.
    Ardimani L, Cibin G, Dent AJ et al (2015) Solid base catalysed 5-HMF oxidation to 2,5-FDCA over Au/hydrotalcites: fact or fiction? Chem Sci 6:4940–4945CrossRefGoogle Scholar
  5. 5.
    Artz J, Mallmann S, Palkovits R (2015) Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts. ChemSusChem 8:672–679CrossRefGoogle Scholar
  6. 6.
    Baruah D, Hussain FL, Suri M et al (2016) Bi(NO3)3·5H2O and cellulose mediated Cu-NPs—a highly efficient and novel catalytic system for aerobic oxidation of alcohols to carbonyls and synthesis of DFF from HMF. Catal Commun 77:9–12CrossRefGoogle Scholar
  7. 7.
    Cai J, Ma H, Zhang J et al (2013) Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions. Chem Eur J 19:14215–14223CrossRefGoogle Scholar
  8. 8.
    Jain A, Jonnalagadda SC, Ramanujachary KV et al (2015) Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst. Catal Commun 58:179–182CrossRefGoogle Scholar
  9. 9.
    Chen J, Zhong J, Guoa Y et al (2015) Ruthenium complex immobilized on poly(4-vinylpyridine)-functionalized carbon-nanotube for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. RSC Adv 5:5933–5940CrossRefGoogle Scholar
  10. 10.
    Choudhary H, Nishimura S, Ebitani K (2013) Metal-free oxidative synthesis of succinic acid from biomass-derived furan compounds using a solid acid catalyst with hydrogen peroxide. Appl Catal A: Gen 458:55–62CrossRefGoogle Scholar
  11. 11.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRefGoogle Scholar
  12. 12.
    Fang R, Luque R, Li Y (2016) Efficient one-pot fructose to DFF conversion using sulfonated magnetically separable MOF-derived Fe3O4 (111) catalysts. Green Chem. doi: 10.1039/c6gc02018f Google Scholar
  13. 13.
    Ghosh K, Mollaa RA, Iqubalb MA et al (2016) Ruthenium nanoparticles supported on N-containing mesoporous polymer catalyzed aerobic oxidation of biomass-derived5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). Appl Catal A: Gen 520:44–52CrossRefGoogle Scholar
  14. 14.
    Gui Z, Cao W, Saravanamurugan S et al (2016) Efficient Aerobic oxidation of 5-hydroxymethylfurfural in aqueous media with Au–Pd supported on Zinc hydroxycarbonate. ChemCatChem 8:3636–3643Google Scholar
  15. 15.
    Gupta NK, Nishimura S, Takagaki A et al (2011) Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chem 13:824–827CrossRefGoogle Scholar
  16. 16.
    Han X, Geng L, Guo Y et al (2016) Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst. Green Chem 18:1597–1604CrossRefGoogle Scholar
  17. 17.
    Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605CrossRefGoogle Scholar
  18. 18.
    Li H, Yang S, Riisager et al (2016) Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chem. 18:5701–5735.Google Scholar
  19. 19.
    Liu B, Zhang Z, Lv K (2014) Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide. Appl Catal A: Gen 472:64–71CrossRefGoogle Scholar
  20. 20.
    Liu B, Ren Y, Zhang Z (2015) Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions. Green Chem 17:1610–1617CrossRefGoogle Scholar
  21. 21.
    Lucarelli C, Galli S, Maspero A et al (2016) Adsorbent—adsorbate interactions in the oxidation of HMF catalyzed by Ni-based MOFs: A DRIFT and FT-IR insight. J Phys Chem C 120:15310–15321CrossRefGoogle Scholar
  22. 22.
    Lv G, Wang H, Yang Y et al (2016) Aerobic selective oxidation of 5-hydroxymethylfurfural over nitrogen-doped graphene materials with 2,2,6,6-tetramethylpiperidin-oxyl as cocatalyst. Catal Sci Technol 6:2377–2386CrossRefGoogle Scholar
  23. 23.
    Lv G, Wang H, Yang Y et al (2016) Direct synthesis of 2,5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst. Green Chem 18:2302–2307CrossRefGoogle Scholar
  24. 24.
    Neatu F, Marin RS, Florea M et al (2016) Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts. Appl Catal B: Environ 180:751–757CrossRefGoogle Scholar
  25. 25.
    Neatua F, Petreab N, Petreb R et al (2016) Oxidation of 5-hydroxymethyl furfural to 2,5-diformylfuran inaqueous media over heterogeneous manganese based catalysts. Catal Today 278:66–73. doi: 10.1016/j.cattod.2016.03.031 Google Scholar
  26. 26.
    Nguyen CV, Liao YT, Kang TC et al (2016) A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chem 18:5957–5961. doi: 10.1039/c6gc02118b Google Scholar
  27. 27.
    Pasini T, Piccinini M, Blosi M et al (2011) Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold–copper nanoparticles. Green Chem 13:2091–2099CrossRefGoogle Scholar
  28. 28.
    Rass HA, Essayem N, Besson M (2013) Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion. Green Chem 15:2240–2251CrossRefGoogle Scholar
  29. 29.
    Rass HA, Essayem N, Besson M (2015) Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2- and ZrO2- based supports. ChemSusChem 8:1206–1217CrossRefGoogle Scholar
  30. 30.
    Sadaba I, Gorbanev YY, Kegnæs S et al (2013) Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem 5:284–293CrossRefGoogle Scholar
  31. 31.
    Saha B, Gupta D, Abu-Omar MM et al (2013) Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid. J Catal 299:316–320CrossRefGoogle Scholar
  32. 32.
    Villa A, Schiavoni M, Campisi S et al (2013) Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. ChemSusChem 6:609–612CrossRefGoogle Scholar
  33. 33.
    Wang Y, Liu B, Huang K et al (2014) Aerobic oxidation of biomass-derived 5-(hydroxymethyl) furfural into 2,5-Diformylfuran catalyzed by the trimetallic mixed oxide (Co–Ce–Ru). Ind Eng Chem Res 53:1313–1319CrossRefGoogle Scholar
  34. 34.
    Wang S, Zhang Z, Liu B et al (2014) Environmentally friendly oxidation of biomass derived5-hydroxymethylfurfural into 2,5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst. Ind Eng Chem Res 53:5820–5827CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Liu B, Lv K et al (2014) Aerobic oxidation of biomass derived 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalysed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex. Green Chem 16:2762–2770CrossRefGoogle Scholar
  36. 36.
    Zhang Z, Zhen J, Liu B et al (2015) Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst. Green Chem 17:1308–1317CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Xue Z, Wang J et al (2016) Controlled deposition of Pt nanoparticles on Fe3O4@carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural. RSC Adv 6:51229–51237CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • S. Saravanamurugan
    • 1
    Email author
  • Ashok Pandey
    • 1
  • Rajender Singh Sangwan
    • 1
  1. 1.Center of Innovative and Applied Bioprocessing (CIAB)MohaliIndia

Personalised recommendations