Biofuels pp 7-33 | Cite as

Sustainable Production of Chemicals and Energy Fuel Precursors from Lignocellulosic Fractions

  • Bhumica Agarwal
  • Vivek Ahluwalia
  • Ashok Pandey
  • Rajender Singh Sangwan
  • Sasikumar ElumalaiEmail author
Part of the Green Energy and Technology book series (GREEN)


From time immemorial, bioprocessing of lignocelluloses via chemical catalysis has been an impressive methodology of numerous value added commodities and energy fuel precursors (drop-in-fuel) synthesis. The most common technique for biomass fragmentation is catalytic hydrolysis using various acid catalysts covering inorganic or organic liquid acids as well as solid acids (heterogeneous). Most research in the past decade has been focused on cost-effective production of such biomass derived commodities with the aim of their commercialization. Till date, in order to improve final product yields and minimize production costs, various improvised production schemes have been developed like pretreatment methods for improved saccharification and displacement and/or reconstruction of recalcitrant biomass constituents, such as lignin to improve accessibility, employing multi-functional catalysts to promote single stage transformations, continuous extraction of desired product by use of specific solvents to improve product stability as well as to inhibit by-product formation, integration of physical processes for example microwave and ultrasonic irradiation resulting in decreased residence time, etc. With these technological advancements, researchers have overcome substantial limitations associated with lignocellulose transformation including mass-transfer hindrances and expensive downstream processing; as a result a wide array of commercially important chemicals and fuel precursors have been synthesised. The chapter provides an account of value addition to biomass via chemical catalysis of cellulosic, hemicellulosic and lignin fractions towards product chemicals synthesis.


Lignocellulose Chemical catalysis Biorefining Fuel precursors Value-added chemicals 



The authors gratefully thank Department of Biotechnology, New Delhi, India for their consistent financial support. Authors BA and SE thank Department of Science and Technology (DST-SERB), New Delhi for providing financial assistance through Grant No. PDF/2015/000285 and Grant No. YSS/2014/000031, respectively.


  1. 1.
    Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79(3):277–299CrossRefGoogle Scholar
  2. 2.
    Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci 107(10):4516–4521CrossRefGoogle Scholar
  3. 3.
    Brody T (1999) Nutrients that resist or escape digestion. Nutritional Biochemistry 2nd edition, Academic Press, San Diego, pp 53–61Google Scholar
  4. 4.
    Brunow G, Lundquist K (2010) Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). CRC Press, Taylor Francis Group, New York, NY, USACrossRefGoogle Scholar
  5. 5.
    Cao N-J, Xu Q, Chen C-S, Gong CS, Chen LF (1994) Cellulose hydrolysis using zinc chloride as a solvent and catalyst. Appl Biochem Biotechnol 45(1):521–530CrossRefGoogle Scholar
  6. 6.
    Carvalheiro F, Duarte LC, GÃrio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 849–864Google Scholar
  7. 7.
    Cengiz M, Dincturk OD, Sahin HT (2010) Fractional extraction and structural characterization of opium poppy and cotton stalks hemicelluloses. Pharm Mag 6(24):315CrossRefGoogle Scholar
  8. 8.
    Chan JMW, Bauer S, Sorek H, Sreekumar S, Wang K, Toste FD (2013) Studies on the vanadium-catalyzed nonoxidative depolymerization of miscanthus giganteus-derived lignin. ACS Catal 3(6):1369–1377CrossRefGoogle Scholar
  9. 9.
    Chen H, Qin L, Yu B (2015) Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5). Biomass Bioenerg 73:77–83CrossRefGoogle Scholar
  10. 10.
    Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg 46:25–35CrossRefGoogle Scholar
  11. 11.
    Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45(1):13Google Scholar
  12. 12.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502CrossRefGoogle Scholar
  13. 13.
    Crezee E, Hoffer BW, Berger RJ, Makkee M, Kapteijn F, Moulijn JA (2003) Three-phase hydrogenation of D-glucose over a carbon supported ruthenium catalyst: mass transfer and kinetics. Appl Catal A 251(1):1–17CrossRefGoogle Scholar
  14. 14.
    da Costa Lopes AM, Joo KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Processes 1(1):1Google Scholar
  15. 15.
    De Bari I, Nanna F, Braccio G (2007) SO2-catalyzed steam fractionation of aspen chips for bioethanol production: optimization of the catalyst impregnation. Ind Eng Chem Res 46(23):7711–7720CrossRefGoogle Scholar
  16. 16.
    Dhar S, Shukla PR (2015) Low carbon scenarios for transport in India: co-benefits analysis. Energy Policy 81:186–198CrossRefGoogle Scholar
  17. 17.
    Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33(2):259–276CrossRefGoogle Scholar
  18. 19.
    Elumalai S, Pan XJ (2011) Chemistry and reactions of forest biomass in biorefining. In: Sustainable production of fuels, chemicals, and fibers from forest biomass. ACS symposium series, vol 1067. American Chemical Society, pp 109–144Google Scholar
  19. 18.
    Elumalai S, Agarwal B, Sangwan RS (2016) Thermo-chemical pretreatment of rice straw for further processing for levulinic acid production. Bioresour Technol 218:232–246CrossRefGoogle Scholar
  20. 20.
    Emmel A, Mathias AL, Wypych F, Ramos LP (2003) Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresour Technol 86(2):105–115CrossRefGoogle Scholar
  21. 21.
    Farmer TJ, Mascal M (2015) Platform molecules. In: Introduction to chemicals from biomass. John Wiley & Sons, Ltd, pp 89–155Google Scholar
  22. 22.
    Fasching M, Schroder P, Wollboldt RP, Weber HK, Sixta H (2008) A new and facile method for isolation of lignin from wood based on complete wood dissolution. Holzforschung 62(1):15–23CrossRefGoogle Scholar
  23. 23.
    Forchheim D, Gasson JR, Hornung U, Kruse A, Barth T (2012) Modeling the lignin degradation kinetics in a ethanol/formic acid solvolysis approach. Part 2. validation and transfer to variable conditions. Ind Eng Chem Res 51(46):15053–15063CrossRefGoogle Scholar
  24. 24.
    Gasson JR, Forchheim D, Sutter T, Hornung U, Kruse A, Barth T (2012) Modeling the lignin degradation kinetics in an ethanol/formic acid solvolysis approach. Part 1. Kinetic model development. Ind Eng Chem Res 51(32):10595–10606CrossRefGoogle Scholar
  25. 25.
    Grestini C (2011) Conversion of lignin: chemical technologies and biotechnologies. EuroBioRef Summer School, Universita Degli Studi di Roma, Castro Marina, Lecce, ItalyGoogle Scholar
  26. 26.
    Guo F, Fang Z, Xu CC, Smith RL (2012) Solid acid mediated hydrolysis of biomass for producing biofuels. Prog Energy Combust Sci 38(5):672–690CrossRefGoogle Scholar
  27. 27.
    Haberl H, Erb K-H, Krausmann F, Bondeau A, Lauk C, Müller C, Plutzar C, Steinberger JK (2011) Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass Bioenerg 35(12):4753–4769CrossRefGoogle Scholar
  28. 28.
    Harris EE, D’Ianni J, Adkins H (1938) Reaction of hardwood lignin with hydrogen. J Am Chem Soc 60(6):1467–1470CrossRefGoogle Scholar
  29. 29.
    Hattori H, Ono Y (2015) Solid acid catalysis: from fundamentals to applications. CRC PressGoogle Scholar
  30. 30.
    Herrera A, Tallez-Luis SJ, Ramarez JA, Vazquez M (2003) Production of xylose from sorghum straw using hydrochloric acid. J Cereal Sci 37(3):267–274CrossRefGoogle Scholar
  31. 31.
    Hu R, Lin L, Liu T, Liu S (2010) Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure. Bioresour Technol 101(10):3586–3594CrossRefGoogle Scholar
  32. 32.
    IEA (2014) World energy outlook 2014. International Energy Agency (IEA), ParisGoogle Scholar
  33. 33.
    Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559CrossRefGoogle Scholar
  34. 34.
    Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Decomposition of a phenolic lignin model compound over organic N-bases in an ionic liquid. Holzforschung 64(5):577–580CrossRefGoogle Scholar
  35. 35.
    Jiang Y, Li X, Wang X, Meng L, Wang H, Peng G, Wang X, Mu X (2012) Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation. Green Chem 14(8):2162–2167CrossRefGoogle Scholar
  36. 36.
    Johann G (1959) Production of phenols by catalytic hydrogenation of lignin. US2870133 AGoogle Scholar
  37. 37.
    Kaldstrom M, Kumar N, Murzin DY (2011) Valorization of cellulose over metal supported mesoporous materials. Catal Today 167(1):91–95CrossRefGoogle Scholar
  38. 38.
    Karinen R, Vilonen K, Niemel M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4(8):1002–1016CrossRefGoogle Scholar
  39. 39.
    Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2(5):869–883CrossRefGoogle Scholar
  40. 40.
    Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46(2):126–131CrossRefGoogle Scholar
  41. 41.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  42. 42.
    Kuster BFM, Der Van Steen HJC (1977) Preparation of 5-hydroxymethylfurfural Part I. Dehydration of fructose in a continuous stirred tank reactor. Starch 29(3):99–103Google Scholar
  43. 43.
    Lavoie J-M, Bara W, Bilodeau M (2011) Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour Technol 102(7):4917–4920CrossRefGoogle Scholar
  44. 44.
    Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376CrossRefGoogle Scholar
  45. 45.
    Li C, Zhao ZK (2007) Efficient acid catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349(11–12):1847–1850CrossRefGoogle Scholar
  46. 46.
    Li H, Qu Y, Xu J (2015) Microwave-Assisted conversion of lignin. In: Fang Z, Smith JLR, Qi X (eds) Production of biofuels and chemicals with microwave. Springer, Netherlands, Dordrecht, pp 61–82CrossRefGoogle Scholar
  47. 47.
    Liguori L, Barth T (2011) Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water. J Anal Appl Pyrol 92(2):477–484CrossRefGoogle Scholar
  48. 48.
    Lima S, Fernandes A, Antunes MM, Pillinger M, Ribeiro F, Valente AA (2010) Dehydration of xylose into furfural in the presence of crystalline microporous silicoaluminophosphates. Catal Lett 135(1–2):41–47CrossRefGoogle Scholar
  49. 49.
    Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96(18):1967–1977CrossRefGoogle Scholar
  50. 50.
    Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Nonenzymatic sugar production from biomass using biomass-derived gamma-valerolactone. Science 343(6168):277–280CrossRefGoogle Scholar
  51. 51.
    Mandalika A, Runge T (2012) Enabling integrated biorefineries through high-yield conversion of fractionated pentosans into furfural. Green Chem 14(11):3175–3184CrossRefGoogle Scholar
  52. 52.
    Marzialetti T, Valenzuela Olarte MB, Sievers C, Hoskins TJC, Agrawal PK, Jones CW (2008) Dilute acid hydrolysis of Loblolly pine: a comprehensive approach. Ind Eng Chem Res 47(19):7131–7140CrossRefGoogle Scholar
  53. 53.
    McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101(17):6718–6727CrossRefGoogle Scholar
  54. 54.
    Misson M, Haron R, Kamaroddin MFA, Amin NAS (2009) Pretreatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis. Bioresour Technol 100(11):2867–2873CrossRefGoogle Scholar
  55. 55.
    Moreno-Recio M, Santamaría-González J, Maireles-Torres P (2016) Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural. Chem Eng J 303:22–30CrossRefGoogle Scholar
  56. 56.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRefGoogle Scholar
  57. 57.
    Motoyoshi O, Yoshio M, Kan K (1963) Process of liquefaction of ligninGoogle Scholar
  58. 58.
    Panagiotou G, Olsson L (2007) Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 96(2):250–258CrossRefGoogle Scholar
  59. 59.
    J-Y Park, Shiroma R, Al-Haq MI, Zhang Y, Ike M, Arai-Sanoh Y, Ida A, Kondo M, Tokuyasu K (2010) A novel lime pretreatment for subsequent bioethanol production from rice straw calcium capturing by carbonation (CaCCO) process. Bioresour Technol 101(17):6805–6811CrossRefGoogle Scholar
  60. 60.
    Qi X, Guo H, Li L (2011) Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. Ind Eng Chem Res 50(13):7985–7989CrossRefGoogle Scholar
  61. 61.
    Rackemann DW, Doherty WO (2011) The conversion of lignocellulosics to levulinic acid. Biofuels, Bioprod Biorefin 5(2):198–214CrossRefGoogle Scholar
  62. 62.
    Ragg PL, Fields PR, Tinker PB (1987) The development of a process for the hydrolysis of lignocellulosic waste [and discussion]. Philos Trans R Soc Lond A: Math, Phys Eng Sci 321(1561):537–547CrossRefGoogle Scholar
  63. 63.
    Raven PH, Evert, R.F. (1992) Biology of plants. 6th Edition edn. W.H. Freeman and Company/Worth PublishersGoogle Scholar
  64. 64.
    Rinaldi R, Palkovits R, Schath F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47(42):8047–8050CrossRefGoogle Scholar
  65. 65.
    Rita de Cassia LB, Rocha GJM, Rodrigues D, Helcio Filho JI, Maria das Gracas AF, Pessoa A (2010) Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Bioresour Technol 101(4):1247–1253Google Scholar
  66. 66.
    Rivas B, Domanguez JM, Domanguez H, Paraji JC (2002) Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme Microb Technol 31(4):431–438CrossRefGoogle Scholar
  67. 67.
    Roberts V, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem A: Eur J 17(21):5939–5948Google Scholar
  68. 68.
    Rosatella AA, Simeonov SP, Frade RF, Afonso CA (2011) 5-hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793CrossRefGoogle Scholar
  69. 69.
    Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845CrossRefGoogle Scholar
  70. 70.
    Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16(1):24–38CrossRefGoogle Scholar
  71. 71.
    Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700CrossRefGoogle Scholar
  72. 72.
    Shen Y, Sun J-K, Yi Y-X, Wang B, Xu F, Sun R-C (2015) One-pot synthesis of levulinic acid from cellulose in ionic liquids. Bioresour Technol 192:812–816CrossRefGoogle Scholar
  73. 73.
    Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation/hydrogenolysis process. Energy Environ Sci 6(3):994–1007CrossRefGoogle Scholar
  74. 74.
    Stark K, Taccardi N, Basmann A, Wasserscheid P (2010) Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 3(6):719–723CrossRefGoogle Scholar
  75. 75.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefGoogle Scholar
  76. 76.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975CrossRefGoogle Scholar
  77. 77.
    Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651CrossRefGoogle Scholar
  78. 78.
    Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11(3):339–345CrossRefGoogle Scholar
  79. 79.
    Teong SP, Yi G, Zhang Y (2015) Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem 16(4):2015–2026CrossRefGoogle Scholar
  80. 80.
    Wang H, Tucker M, Ji Y (2013) Recent development in chemical depolymerization of lignin: a review. J Appl ChemGoogle Scholar
  81. 81.
    Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass. Volume 1-results of screening for potential candidates from sugars and synthesis gas. DTIC DocumentGoogle Scholar
  82. 82.
    Yoshikawa T, Yagi T, Shinohara S, Fukunaga T, Nakasaka Y, Tago T, Masuda T (2012) Production of phenols from lignin via depolymerization and catalytic cracking. Fuel Process Technol 108:69–75CrossRefGoogle Scholar
  83. 83.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599CrossRefGoogle Scholar
  84. 85.
    Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol 101(3):1111–1114CrossRefGoogle Scholar
  85. 84.
    Zhang D, Ong YL, Li Z, Wu JC (2012) Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chem Eng J 181:636–642CrossRefGoogle Scholar
  86. 86.
    Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827CrossRefGoogle Scholar
  87. 87.
    Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRefGoogle Scholar
  88. 88.
    Zhou C-H, Xia X, Lin C-X, Tong D-S, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40(11):5588–5617CrossRefGoogle Scholar
  89. 89.
    Zi G, Yan Z, Wang Y, Chen Y, Guo Y, Yuan F, Gao W, Wang Y, Wang J (2015) Catalytic hydrothermal conversion of carboxymethyl cellulose to value-added chemicals over metal–organic framework MIL-53 (Al). Carbohydr Polym 115:146–151CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Bhumica Agarwal
    • 1
  • Vivek Ahluwalia
    • 1
  • Ashok Pandey
    • 1
  • Rajender Singh Sangwan
    • 1
  • Sasikumar Elumalai
    • 1
    Email author
  1. 1.Center of Innovative and Applied Bioprocessing (CIAB)MohaliIndia

Personalised recommendations