Biofuels pp 177-199 | Cite as

Surrogates for Biodiesel: Review and Challenges

  • Aditya Dilip Lele
  • Krishnasamy Anand
  • Krithika NarayanaswamyEmail author
Part of the Green Energy and Technology book series (GREEN)


Biodiesel is being considered as a renewable fuel candidate to completely or partially replace fossil diesel. Understanding its combustion is key to assess its applicability in practical compression ignition engines. Significant progress has been made in understanding biodiesel combustion through experimental studies, development of reaction kinetics to describe its oxidation, and simulations in typical engine environments. The use of surrogates in place of the real biodiesels plays a crucial role in this endeavour. This chapter reviews the existing studies revolving around surrogate fuels for biodiesels. Thereafter, the challenges ahead in this context to further enhance our knowledge of biodiesel combustion are presented, and possible options to address these are discussed where appropriate.


Biodiesel Surrogate Chemical kinetics Challenges 

List of Abbreviations


Methyl butanoate


Methyl crotonate


Methyl decanoate








Cetane number


Negative temperature coefficient


Lower heating value


Cold filter plugging point


Jet stirred reactor


Rapeseed methyl ester


Palm methyl ester


Homogeneous charge compression ignition


Nitrogen oxides



The last author gratefully acknowledges support from the New Faculty Initiation Grant, Project no. MEE/15–16/845/NFIG offered by the Indian Institute of Technology Madras.


  1. 1.
    Anand K, Sharma RP, Mehta PS (2008) Experimental investigations on combustion of jatropha methyl ester in a turbocharged direct-injection diesel engine. Proc Inst Mech Eng Part D: J Autom Eng 222(10):1865–1877CrossRefGoogle Scholar
  2. 2.
    Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34CrossRefGoogle Scholar
  3. 3.
    Wang W-G, Lyons W, Clark N, Gautam M, Norton P (2000) Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environ Sci Technol 34(6):933–939CrossRefGoogle Scholar
  4. 4.
    Colket M, Edwards T, Williams S, Cernansky NP, Miller DL, Egolfopoulos F, Lindstedt P, Seshadri K, Dryer FL, Law CK, Friend D, Lenhert DB, Pitsch v, Sarofim A, Smooke M, Tsang W (2007) Development of an experimental database and kinetic models for surrogate jet fuels. In: 45th AIAA aerospace sciences meeting and exhibit, pp 2007–770Google Scholar
  5. 5.
    Narayanaswamy K, Pitsch H, Pepiot P (2016) A component library framework for deriving kinetic mechanisms for multi-component fuel surrogates: application for jet fuel surrogates. Combust Flame 165:288–309CrossRefGoogle Scholar
  6. 6.
    Farrell JT, Cernansky NP, Dryer FL, Friend DG, Hergart CA, Law CK, McDavid RM, Mueller CJ, Patel AK, Pitsch H (2007) Development of an experimental database and kinetic models for surrogate diesel fuels. SAE Paper No. 2007-01-0201Google Scholar
  7. 7.
    Pitz WJ, Mueller CJ (2011) Recent progress in the development of diesel surrogate fuels. Prog Energy Combust Sci 37(3):330–350CrossRefGoogle Scholar
  8. 8.
    Mehl M, Chen J-Y, Pitz WJ, Mani Sarathy S, Westbrook CK (2011) An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for CFD engine modeling. Energy Fuels 25(11):5215–5223CrossRefGoogle Scholar
  9. 9.
    Westbrook CK, Naik CV, Herbinet O, Pitz W, Mehl M, Sarathy SM, Curran HJ (2011) Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combust Flame 158(4):742–755CrossRefGoogle Scholar
  10. 10.
    Pitsch H, Bollig M (1993) Flamemaster, a computer code for homogeneous and one-dimensional laminar flame calculations. Institut fur Technische Mechanik, RWTH AachenGoogle Scholar
  11. 11.
    Thangaraja J, Anand K, Pramod S (2016) Mehta. Biodiesel no x penalty and control measures-a review. Renew Sustain Energy Rev 61:1–24CrossRefGoogle Scholar
  12. 12.
    Goodrum JW (2002) Volatility and boiling points of biodiesel from vegetable oils and tallow. Biomass Bioenergy 22(3):205–211CrossRefGoogle Scholar
  13. 13.
    Yanowitz J, Ratcliff MA, McCormick RL, Taylor JD, Murphy MJ (2014) Compendium of experimental cetane numbers. Technical Repot, National Renewable Energy LaboratoryCrossRefGoogle Scholar
  14. 14.
    Takase M, Zhao T, Zhang M, Chen Y, Liu H, Yang L, Xiangyang W (2015) An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew Sustain Energy Rev 43:495–520CrossRefGoogle Scholar
  15. 15.
    Wang W, Gowdagiri S, Oehlschlaeger MA (2013) Comparative study of the autoignition of methyl decanoates, unsaturated biodiesel fuel surrogates. Energy Fuels 27(9):5527–5532CrossRefGoogle Scholar
  16. 16.
    Herbinet O, Pitz WJ, Westbrook CK (2008) Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust Flame 154(3):507–528CrossRefGoogle Scholar
  17. 17.
    Anand K, Sharma RP, Pramod S (2011) Mehta. Experimental investigations on combustion, performance and emissions characteristics of neat karanji biodiesel and its methanol blend in a diesel engine. Biomass Bioenergy 35(1):533–541CrossRefGoogle Scholar
  18. 18.
    Edwards T, Maurice LQ (2000) Surrogate mixtures to represent complex aviation and rocket fuels. J Prop Power 17:461–466CrossRefGoogle Scholar
  19. 19.
    Mueller CJ, Cannella WJ, Bruno TJ, Bunting B, Dettman HD, Franz JA, Huber ML, Natarajan M, Pitz WJ, Ratcliff MA, Wright K (2012) Methodology for formulating diesel surrogate fuels with accurate compositional, ignition-quality, and volatility characteristics. Energy & Fuels 26(6):3284–3303Google Scholar
  20. 20.
    Ahmed A, Goteng G, Shankar VSB, Al-Qurashi K, Roberts WL, Mani Sarathy S (2015) A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties. Fuel 143:290–300Google Scholar
  21. 21.
    Pepiot-Desjardins P (2008) Automatic strategies for chemical mechanism reduction. PhD thesis, Stanford University, Department of Mechanical Engineering, June 2008Google Scholar
  22. 22.
    Gal S, Thomson MJ, Mani Sarathy S, Syed SA, Dagaut P, Diévart P, Marchese AJ, Dryer FL (2007) A wide-ranging kinetic modeling study of methyl butanoate combustion. Proc Combustion Inst 31(1):305–311Google Scholar
  23. 23.
    Liu W, Sivaramakrishnan R, Davis MJ, Som S, Longman DE, Lu TF (2013) Development of a reduced biodiesel surrogate model for compression ignition engine modeling. Proc Combustion Inst 34(1):401–409Google Scholar
  24. 24.
    Kiat Ng H, Gan S, Ng J-H, Mun Pang K (2013) Development and validation of a reduced combined biodiesel–diesel reaction mechanism. Fuel 104:620–634Google Scholar
  25. 25.
    Brakora JL, Ra Y, Reitz RD, McFarlane J, Stuart Daw C (2008) Development and validation of a reduced reaction mechanism for biodiesel-fueled engine simulations. SAE Int J Fuels Lubricants 1(2008-01-1378):675–702Google Scholar
  26. 26.
    Mohamed Ismail H, Kiat Ng H, Gan S, Lucchini T, Onorati A (2013) Development of a reduced biodiesel combustion kinetics mechanism for CFD modelling of a light-duty diesel engine. Fuel 106:388–400Google Scholar
  27. 27.
    Luo Z, Tianfeng L, Maciaszek MJ, Som S, Longman DE (2010) A reduced mechanism for high-temperature oxidation of biodiesel surrogates. Energy Fuels 24(12):6283–6293CrossRefGoogle Scholar
  28. 28.
    An H, Yang WM, Maghbouli A, Li J, Chua KJ (2014) A skeletal mechanism for biodiesel blend surrogates combustion. Energy Convers Manag 81:51–59CrossRefGoogle Scholar
  29. 29.
    Chang Y, Jia M, Li Y, Zhang Y, Xie M, Wang H, Reitz RD (2015) Development of a skeletal oxidation mechanism for biodiesel surrogate. Proc Combustion Inst 35(3):3037–3044Google Scholar
  30. 30.
    Cheng X, Kiat Ng H, Gan S, Hou Ho J, Mun Pang K (2015) Development and validation of a generic reduced chemical kinetic mechanism for CFD spray combustion modelling of biodiesel fuels. Combustion Flame 162(6):2354–2370Google Scholar
  31. 31.
    Luo Z, Plomer M, Lu T, Som S, Longman DE, Mani Sarathy S, and William J. Pitz. A reduced mechanism for biodiesel surrogates for compression ignition engine applications. Fuel, 99:143–153, 2012Google Scholar
  32. 32.
    Liu T, Jiaqiang E, Yang W, Hui A, Hao Cai (2016) Development of a skeletal mechanism for biodiesel blend surrogates with varying fatty acid methyl esters proportion. Appl Energy 162(x):278–288Google Scholar
  33. 33.
    Jiaqiang E, Liu T, Yang W, Deng Y, Gong J (2016) A skeletal mechanism modeling on soot emission characteristics for biodiesel surrogates with varying fatty acid methyl esters proportion. Appl Energy 181:322–331Google Scholar
  34. 34.
    Herbinet O, Pitz WJ, Westbrook CK (2010) Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combust Flame 157(5):893–908CrossRefGoogle Scholar
  35. 35.
    Dagaut P, Gail S, Sahasrabudhe M (2007) Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio: Experimental and modeling kinetic study. Proc Combustion Inst 31 II:2955–2961Google Scholar
  36. 36.
    Fisher EM, Pitz WJ, Curran HJ, Westbrook CK (2000) Detailed chemical kinetic mechanisms for combustion of oxygenated fuels. Proc Combust Inst 28:1579–1586CrossRefGoogle Scholar
  37. 37.
    Metcalfe WK, Dooley S, Curran HJ, Simmie JM, El-Nahas AM, Navarro MV (2007) Experimental and modeling study of C5H10O2 ethyl and methyl esters. J Phys Chem A 111(19):4001–4014CrossRefGoogle Scholar
  38. 38.
    Hakka MH, Glaude PA, Herbinet O, Battin-Leclerc F (2009) Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels. Combustion Flame 156(11):2129–2144Google Scholar
  39. 39.
    Grana R, Frassoldati A, Cuoci A, Faravelli T, Ranzi E (2012) A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate. note i: Lumped kinetic model of methyl butanoate and small methyl esters. Energy 43(1):124–139CrossRefGoogle Scholar
  40. 40.
    Parandaman A, Balaganesh M, Rajakumar B (2015) Experimental and theoretical study on thermal decomposition of methyl butanoate behind reflected shock waves. RSC Advances 5(105):86536–86550CrossRefGoogle Scholar
  41. 41.
    Diévart P, Hee Won S, Gong J, Dooley S, Ju Y (2013) A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction. Proc Combustion Inst 34(1):821–829Google Scholar
  42. 42.
    Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998) A comprehensive modeling study of n-heptane oxidation. Combustion Flame, 114(1):149–177Google Scholar
  43. 43.
    Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (2002) A comprehensive modeling study of iso-octane oxidation. Combustion Flame 129(3):253–280Google Scholar
  44. 44.
    Diévart P, Hee Won S, Dooley S, Dryer FL, Ju Y (2012) A kinetic model for methyl decanoate combustion. Combustion Flame 159(5):1793–1805Google Scholar
  45. 45.
    Gal S, Sarathy SM, Thomson MJ, Diévart P, Dagaut P (2008) Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (e)-2-butenoate and methyl butanoate. Combust Flame 155(4):635–650CrossRefGoogle Scholar
  46. 46.
    Herbinet O, Biet J, Hichem Hakka M, Warth V, Alexandre Glaude P, Nicolle A, Battin-Leclerc F (2011) Modeling study of the low-temperature oxidation of large methyl esters from C11 to C19. Proc Combustion Inst 33(1):391–398Google Scholar
  47. 47.
    Saggese C, Frassoldati A, Cuoci A, Faravelli T, Ranzi E (2013) A lumped approach to the kinetic modeling of pyrolysis and combustion of biodiesel fuels. Proc Combust Inst 34(1):427–434CrossRefGoogle Scholar
  48. 48.
    Coniglio L, Bennadji H, Alexandre Glaude P, Herbinet O, Billaud F (2013) Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): experiments and modeling–advances and future refinements. Progr Energy Combustion Sci 39(4):340–382Google Scholar
  49. 49.
    Lai JYW, Lin KC, Violi A (2011) Biodiesel combustion: advances in chemical kinetic modeling. Progr Energy Combustion Sci 37(1):1–14Google Scholar
  50. 50.
    Sarathy SM, Thomson MJ, Pitz WJ, Lu T (2011) An experimental and kinetic modeling study of methyl decanoate combustion. Proc Combust Inst 33(1):399–405CrossRefGoogle Scholar
  51. 51.
    Dooley S, Curran HJ, Simmie JM (2008) Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate. Combust Flame 153(1):2–32CrossRefGoogle Scholar
  52. 52.
    Wang YL, Lee DJ, Westbrook CK, Egolfopoulos FN, Tsotsis TT (2014) Oxidation of small alkyl esters in flames. Combust Flame 161(3):810–817CrossRefGoogle Scholar
  53. 53.
    Wang YL, Feng Q, Egolfopoulos FN, Tsotsis TT (2011) Studies of C4 and C10 methyl ester flames. Combust Flame 158(8):1507–1519CrossRefGoogle Scholar
  54. 54.
    Alexandre Glaude P, Herbinet O, Bax S, Biet J, Warth V, Battin-Leclerc F (2010) Modeling of the oxidation of methyl esters—validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. Combust Flame 157(11):2035–2050Google Scholar
  55. 55.
    Seshadri K, Tianfeng L, Herbinet O, Humer S, Niemann U, Pitz WJ, Seiser R, Law CK (2009) Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar non-premixed flows. Proc Combust Inst 32(1):1067–1074CrossRefGoogle Scholar
  56. 56.
    Farrel JT, Weissman W, Johnston RJ, Nishimura J, Ueda T, Iwashita Y (2003) Fuel effects on sidi efficiency and emissions. SAE Publication 2003-01-3186 (2003)Google Scholar
  57. 57.
    Kuo TW (1990) J Eng Gas Turbines Power 112:348–356CrossRefGoogle Scholar
  58. 58.
    Tianfeng L, Law CK (2005) A directed relation graph method for mechanism reduction. Proc Combust Inst 30(1):1333–1341CrossRefGoogle Scholar
  59. 59.
    Pepiot-Desjardins P, Pitsch H (2008) An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust Flame 154(1–2):67–81CrossRefzbMATHGoogle Scholar
  60. 60.
    Niemeyer KE, Sung C-J, Raju MP (2010) Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis. Combust Flame 157(9):1760–1770CrossRefGoogle Scholar
  61. 61.
    Gustavsson J, Golovitchev VI (2003) Spray combustion simulation based on detailed chemistry approach for diesel fuel surrogate model. Technical report, SAE Technical PaperGoogle Scholar
  62. 62.
    Som S, Ramirez AI, Longman DE, Aggarwal SK (2011) Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions. Fuel 90(3):1267–1276Google Scholar
  63. 63.
    Som S, Longman DE, Luo Z, Plomer M, Lu T, Senecal PK, Pomraning E (2012) Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and large eddy simulation turbulence model. J Energy Res Technol 134(3):032204Google Scholar
  64. 64.
    Niemeyer KE, Sung C-J (2014) Mechanism reduction for multicomponent surrogates: a case study using toluene reference fuels. Combust Flame 161(11):2752–2764CrossRefGoogle Scholar
  65. 65.
    Davidson DF, Haylett DR, Hanson RK (2008) Development of an aerosol shock tube for kinetic studies of low-vapor-pressure fuels. Combust Flame 155(1):108–117CrossRefGoogle Scholar
  66. 66.
    Narayanaswamy K, Pepiot P (under review) Simulation-driven formulation of transportation fuel surrogates. Combust Theory ModelGoogle Scholar
  67. 67.
    Pintos M, Bravo R (1988) Maria Carmen Baluja, Maria Inmaculada Paz Andrade, Geneviève Roux-Desgranges, and Jean-Pierre E Grolier. Thermodynamics of alkanoate + alkane binary mixtures. concentration dependence of excess heat capacities and volumes. Can J Chem 66(5):1179–1186CrossRefGoogle Scholar
  68. 68.
    Ortega J, Alcalde R (1992) Determination and algebraic representation of volumes of mixing at 298.15 K of methyl n-alkanoates (from ethanoate to n-pentadecanoate) with n-pentadecane. Fluid Phase Equilib 71(1–2):49–62CrossRefGoogle Scholar
  69. 69.
    José S (2001) Matos, José L Trenzado, Emilio González, and Rafael Alcalde. Volumetric properties and viscosities of the methyl butanoate + n-heptane + n-octane ternary system and its binary constituents in the temperature range from 283.15 to 313.15 K. Fluid Phase Equilib 186(1):207–234Google Scholar
  70. 70.
    Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84(9):1059–1065CrossRefGoogle Scholar
  71. 71.
    Tsibanogiannis IN, Kalospiros NS, Tassios DP (1995) Prediction of normal boiling point temperature of medium/high molecular weight compounds. Ind Eng Chem Res 34(3):997–1002CrossRefGoogle Scholar
  72. 72.
    Liu S, Cao C, Li Z (1998) Approach to estimation and prediction for normal boiling point (NBP) of alkanes based on a novel molecular distance-edge (MDE) vector, & #x03BB. J Chem Inf Comput Sci 38(3):387–394CrossRefGoogle Scholar
  73. 73.
    Krishnasamy A, Ra Y, Reitz RD, Bunting B (2012) Combustion simulations of the fuels for advanced combustion engines in a homogeneous charge compression ignition engine. Int J Engine Res 191–208Google Scholar
  74. 74.
    Krishnasamy A, Reitz RD, Willems W, Kurtz E (2013) Surrogate diesel fuel models for low temperature combustion. SAE Technical Paper, 2013-01-1092Google Scholar
  75. 75.
    Anand K, Ra Y, Reitz RD, Bunting B (2011) Surrogate model development for fuels for advanced combustion engines. Energy & Fuels 25(4):1474–1484Google Scholar
  76. 76.
    Xue J, Grift TE, Hansen AC (2011) Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev 15(2):1098–1116CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Aditya Dilip Lele
    • 1
  • Krishnasamy Anand
    • 1
  • Krithika Narayanaswamy
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations