Skip to main content

Theoretical Formulation for the Investigation of Acoustic and Entropy-Driven Combustion Instabilities in Gas Turbine Engines

  • Chapter
  • First Online:
Combustion for Power Generation and Transportation

Abstract

In gas turbine combustors, the unsteady flame is a source of acoustic and entropy waves, leading to combustion noise. When these fluctuations couple with the flame and establish a positive feedback mechanism, they grow in amplitude resulting in combustion instability. Combustion instability can be driven either by the acoustic waves or acceleration of entropy waves. Entropy-driven instability is one of the dominant cause of low frequency combustion instability in industrial gas turbines, where the flow exiting the combustor is accelerated by the turbine nozzle guide vanes. This chapter presents the theoretical framework to model the generation, convection, acceleration and reflection of acoustic and entropy waves in gas turbine combustors with variable area geometry. We also discuss in detail the procedure to solve the equations and present a comparison between acoustic-driven instability and entropy-driven instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson JD (2010) Fundamentals of aerodynamics. Tata McGraw-Hill Education

    Google Scholar 

  2. Bake F, Fischer A (2009) Experimental investigation of the entropy noise mechanism in aero-engines. Int J Aeroacoustics 8

    Google Scholar 

  3. Crocco L, Cheng S (1956) Theory of combustion instability in liquid propellant rocket motors, vol 8. Cambridge Univ Press

    Google Scholar 

  4. Dowling A, Morgans A (2005) Feedback control of combustion oscillations. Ann Rev Fluid Mech

    Google Scholar 

  5. Eckstein J, Freitag E, Hirsch C, Sattelmayer T (2006) Experimental study on the role of entropy waves in low-frequency oscillations in a rql combustor. J Eng Gas Turbines Power 128(2):264–270

    Article  Google Scholar 

  6. Goh C, Morgans A (2013) The influence of entropy waves on thermoacoustic stability of a model combustor. Combust Sci Technol 185(2):249–268

    Article  Google Scholar 

  7. Hield P, Brear M (2008) Comparison of open and choked premixed combustor exits during thermoacoustic limit cycle. AIAA 46(2):517–526

    Article  Google Scholar 

  8. Keller J (1995) Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA 55:2280–2287

    Article  MATH  Google Scholar 

  9. Keller JJ, Egli W, Hellat J (1985) Thermally induced low-frequency oscillations. Zeitschrift für angewandte Mathematik und Physik ZAMP 36(2):250–274

    Article  MATH  Google Scholar 

  10. Lieuwen T, Zinn BT (1998) The role of equivalence ratio oscillations in driving combustion instabilities in low nox gas turbines. In: Symposium (International) on combustion, vol 27. Elsevier, pp 1809–1816

    Google Scholar 

  11. Lieuwen TC (2012) Unsteady combustor physics. Cambridge University Press

    Google Scholar 

  12. Macquisten MA, Dowling AP (1993) Low-frequency combustion oscillations in a model afterburner. Combust Flame 94(3):253–264

    Article  Google Scholar 

  13. Marble F, Candel S (1977) Acoustic distrubance from gas non-uniformities convected through a nozzle. J Sound Vibr 55(2):225–243

    Article  MATH  Google Scholar 

  14. Matalon M (2007) Intrinsic flame instabilities in premixed and nonpremixed combustion. Ann Rev Fluid Mech 39:163–191

    Article  MathSciNet  MATH  Google Scholar 

  15. McManus KR, Poinsot T, Candel SM (1993) A review of active control of combustion instabilities. Prog Energ Combust Sci 19(1):1–29

    Article  Google Scholar 

  16. Morgans A, Goh C, Dahan J (2013) The dissipation and shear dispersion of entropy waves in combustor thermoacoustics. J Fluid Mech 733:R2–1– R2–11

    Google Scholar 

  17. Morgans A, Li J (2015) The effect ofentropy noise on combustion instbility in the presence of advective shear dispersion. In: The 22nd international congress on sound and vibration

    Google Scholar 

  18. Morgans AS, Duran I (2016) Entropy noise: a review of theory, progress and challenges. Int J Spray Combust Dyn 1756827716651791

    Google Scholar 

  19. Motheau E, Nicoud F, Poinsot T (2014) Mixed acoustic-entropy combustion instabilities in gas turbines. J Fluid Mech 749

    Google Scholar 

  20. Murugesan M, Singaravelu B, Kushwaha A, Mariappan S (2016) Onset of entropy-driven combustion instability in turbulent combustors. J Fluid Mech (under review)

    Google Scholar 

  21. Muthukrishnan M, Strahle WC, Neale DH (1978) Separation of hydrodynamic, entropy and combustion noise in a gas turbine combustor. AIAA 16:320–327

    Article  Google Scholar 

  22. Nicoud F, Wieczorek K (2009) About the zero mach number assumption in the calculation of thermoacoustic instabilities. Int J Spray Combust Dyn 1:67–112

    Article  Google Scholar 

  23. Polifke W, Paschereit C, Döbbeling K (2001) Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit. Int J Acoust Vib 6:135–146

    Google Scholar 

  24. Putnam A, Faulkner L (1983) An overview of combustion noise. J Energy 7(6):458–469

    Article  Google Scholar 

  25. Sattelmayer T (2003) Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations. pp V002T02A003–V002T02A003

    Google Scholar 

  26. Schadow KC, Gutmark E (1992) Combustion instability related to vortex shedding in dump combustors and their passive control. Prog Energy Combust Sci 18(2):117–132

    Article  Google Scholar 

  27. Singaravelu B, Mariappan S, Saha A (2016) Role of entropy waves in the stability of unsteady motions in combustors. In: Proceedings of Asian congree of Gas Turbines (in press)

    Google Scholar 

  28. Strahle WC (1978) Combustion noise. Prog Energy Combust Sci 4(3):157–176

    Article  Google Scholar 

  29. Wieczorek K (2010) Numerical study of Mach number effects in combustion instability. Ph.D. thesis, Université Montpellier II

    Google Scholar 

  30. Wu Z, Michiels W (2012) Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method. J Comput Appl Math 236:2499–2514

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu YC, JCS, Sankaran V, Anderson W E (2010) Effects of mean flow, entropy waves, and boundary conditions on longitudinal combustion instability. Combust Sci Technol 182(7):739–776

    Google Scholar 

  32. Zinn BT, Lieuwen TC (2006) Combustion instabilities: basic concepts—Combustion Instabilities in Gas Turbine Engines: operational experience, fundamental mechanisms, and modeling. AIAA, USA

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. T. Poinsot, Research Director, Institut de Mecanique des Fluides de Toulouse, CNRS, France for his insightful suggestions and providing recent references, which formed the foundation of the reported work. The first and third authors would like to thank Indian Institute of Technology Kanpur for providing the financial support through the Institute Post-Doctoral and SURGE Fellowships respectively, which made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Singaravelu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Singaravelu, B., Mariappan, S., Saha, A. (2017). Theoretical Formulation for the Investigation of Acoustic and Entropy-Driven Combustion Instabilities in Gas Turbine Engines. In: Agarwal, A., De, S., Pandey, A., Singh, A. (eds) Combustion for Power Generation and Transportation. Springer, Singapore. https://doi.org/10.1007/978-981-10-3785-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3785-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3784-9

  • Online ISBN: 978-981-10-3785-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics