Skip to main content

Global and Local Viewpoints to Analyze Turbulence-Premixed Flame Interaction

  • Chapter
  • First Online:
Combustion for Power Generation and Transportation
  • 1188 Accesses

Abstract

Turbulence remains one of the most important unresolved problems in classical physics. The addition of exothermicity through a myriad of chemical reactions in fluid turbulence renders turbulent combustion a formidable challenge alongside its ubiquity in all chemical to mechanical energy conversion devices. Here, we review some recent advancements in theory, experiments, and computations of turbulent premixed combustion through two ostensibly decoupled: global and local viewpoints. Global viewpoints are essential to obtain useful statistics of turbulent flame propagation such as turbulent flame speed. Local viewpoints are crucial towards understanding detailed phenomena such as how local flame elements are stretched or annihilated. These fine grained understandings must culminate towards various sub-models of a successful global model. Essential features of recent theoretical developments towards turbulent flame speed using the level set formulation are reviewed here. The theoretical turbulent flame speed is shown to conform to the experimental expanding flame measurements over a wide range of fuels, pressure and turbulence intensity. Finally, recent advances to track flame elements and their local properties from detailed chemistry direct numerical simulations, are reviewed through a Lagrangian viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clavin P, Williams F (1979) J Fluid Mech 90:589–604

    Article  Google Scholar 

  2. Victor Y (1988) Combust Sci Technol 60:191–214

    Article  Google Scholar 

  3. Kerstein AR (1991) Phys Rev A 44

    Google Scholar 

  4. Kerstein AR, Ashurst WT (1992) Phys Rev Lett 68:934–937

    Article  Google Scholar 

  5. Spalding DB (1977) Development of the eddy-break-up model of turbulent combustion In: Symposium (International) on combustion. Elsevier, pp 1657–1663

    Google Scholar 

  6. Pocheau A (1994) Phys Rev E 49:1109–1122

    Article  MathSciNet  Google Scholar 

  7. Lipatnikov A, Chomiak J (2007) Proc Combust Inst 31:1361–1368

    Article  Google Scholar 

  8. Kolla H, Rogerson JW, Chakraborty N, Swaminathan N (2009) Combust Sci Technol 181:518–535

    Article  Google Scholar 

  9. Abdel-Gayed RG, Bradley D, Lawes M (1987) Proceedings of the royal society A: mathematical. Phys Eng Sci 414:389–413

    Article  Google Scholar 

  10. Bradley D, Lawes M, Mansour MS (2011) Combust Flame 158:123–138

    Article  Google Scholar 

  11. Filatyev SA, Driscoll JF, Carter CD, Donbar JM (2005) Combust Flame 141:1–21

    Article  Google Scholar 

  12. Kwon S, Wu MS, Driscoll JF, Faeth GM (1992) Combust Flame 88:221–238

    Article  Google Scholar 

  13. Kobayashi H, Tamura T, Maruta K, Niioka T, Williams FA (1996) Symp (International) Combust 26:389–396

    Article  Google Scholar 

  14. Kobayashi H, Seyama K, Hagiwara H, Ogami Y (2005) Proc Combust Inst 30:827–834

    Article  Google Scholar 

  15. Venkateswaran P, Marshall A, Shin DH, Noble D, Seitzman J, Lieuwen T (2011) Combust Flame 158:1602–1614

    Article  Google Scholar 

  16. Bell JB, Day MS, Shepherd IG, Johnson MR, Cheng RK, Grcar JF, Beckner VE, Lijewski MJ (2005) Proc Natl Acad Sci 102:10006–10011

    Article  Google Scholar 

  17. Shim Y, Tanaka S, Tanahashi M, Miyauchi T (2011) Proc Combust Inst 33:1455–1462

    Article  Google Scholar 

  18. Lipatnikov AN, Chomiak J (2002) Prog Energy Combust Sci 28:1–74

    Article  Google Scholar 

  19. Lipatnikov AN, Chomiak J (2010) Prog Energy Combust Sci 36:1–102

    Article  Google Scholar 

  20. Peters N (2000) Turbulent combustion. Cambridge university press

    Google Scholar 

  21. Lipatnikov AN, Chomiak J (2005) Prog Energy Combust Sci 31:1–73

    Article  Google Scholar 

  22. Driscoll J (2008) Prog Energy Combust Sci 34:91–134

    Article  Google Scholar 

  23. Akkerman V, Chaudhuri S, Law CK (2013) Phys Rev E 87:023008

    Google Scholar 

  24. Chaudhuri S, Akkerman V, Law CK (2011) Phys Rev E 84

    Google Scholar 

  25. Chaudhuri S, Wu F, Law CK (2013) Phys Rev E 88:033005

    Article  Google Scholar 

  26. Lawes M, Ormsby MP, Sheppard CGW, Woolley R (2012) Combust Flame 159:1949–1959

    Article  Google Scholar 

  27. Chaudhuri S (2015) Proc Combust Inst 35:1305–1312

    Article  Google Scholar 

  28. Pope SB (1988) Int J Eng Sci 26:445–469

    Article  Google Scholar 

  29. Peters N (1999) J Fluid Mech 384:107–132

    Article  Google Scholar 

  30. Pope S (1987) Ann Rev Fluid Mech 19:237–270

    Article  Google Scholar 

  31. Poludnenko AY, Oran ES (2011) Combust Flame 158:301–326

    Article  Google Scholar 

  32. Aspden AJ, Day MS, Bell JB (2011) J Fluid Mech 680:287–320

    Article  Google Scholar 

  33. Troiani G, Creta F, Matalon M (2015) Proc Combust Inst 35:1451–1459

    Article  Google Scholar 

  34. Peters N (1992) J Fluid Mech 242:611–629

    Article  MathSciNet  Google Scholar 

  35. Peters N, Wenzel H, Williams FA (2000) Proc Combust Inst 28:235–243

    Article  Google Scholar 

  36. Collins LR, Ulitsky M (1996) Symp (International) Combust 26:315–322

    Article  Google Scholar 

  37. Ulitsky M, Ghenai C, Gokalp I, Wang L-P, Collins LR (2000) Combust Theor Modell 4:241–264

    Article  Google Scholar 

  38. Dandekar A (1995) Combust Flame 101:428–440

    Article  Google Scholar 

  39. Oberlack M, Wenzel H, Peters N (2001) Combust Theor Modell 5:363–383

    Article  Google Scholar 

  40. Chaudhuri S, Akkerman V, Law CK (2011) Phys Rev E 84:026322

    Google Scholar 

  41. Kelley AP, Law CK (2009) Combust Flame 156:1844–1851

    Article  Google Scholar 

  42. Law CK (2006) Combustion physics. Cambridge University Press, New York

    Book  Google Scholar 

  43. Peters N (1999) Combust Flame 116:675–676

    Article  Google Scholar 

  44. Donzis DA, Sreenivasan KR, Yeung PK (1999) J Fluid Mech 532:199–216

    Article  Google Scholar 

  45. Darrieus G (1938) La Technique Moderne and Congrés de Mécanique Appliquée Paris

    Google Scholar 

  46. Landau L (1944) Acta Physicochim

    Google Scholar 

  47. Markstein GH (1964) N.A.T.O.A.G.f.A. Research, development, nonsteady flame propagation, published for and on behalf of advisory group for aeronautical research and development, North Atlantic treaty organization by Pergamon press

    Google Scholar 

  48. Pelce P, Clavin P (1982) J Fluid Mech 124:219

    Article  Google Scholar 

  49. Matalon M, Matkowsky BJ (1982) J Fluid Mech 124:239

    Article  Google Scholar 

  50. Sivashinsky GI (1977) Acta Astronaut 4:1177–1206

    Article  MathSciNet  Google Scholar 

  51. Renou B, Mura A, Samson E, Boukhalfa A (2002) Combust Sci Tech 174:143–179

    Article  Google Scholar 

  52. Chaudhuri S, Wu F, Zhu D, Law CK (2012) Phys Rev Lett 108:044503

    Article  Google Scholar 

  53. Chaudhuri S, Saha A, Law CK (2015) Proc Combust Inst 35:1331–1339

    Article  Google Scholar 

  54. Bradley D, Sheppart CGW, Woolley R, Greenhalgh DA, Lockett RD (2000) Combust Flame 122:195–209

    Article  Google Scholar 

  55. Wu F, Saha A, Chaudhuri S, Law CK (2015) Proc Combust Inst 35:1501–1508

    Article  Google Scholar 

  56. Rozenchan G, Zhu DL, Law CK, Tse SD (2002) Proc Combust Inst 29:1461–1470

    Article  Google Scholar 

  57. Fairweather M, Ormsby MP, Sheppard CGW, Woolley R (2009) Combust Flame 156:780–790

    Article  Google Scholar 

  58. Yeung PK, Girimaji SS, Pope SB (1990) Combust Flame 79:340–365

    Article  Google Scholar 

  59. Girimaji SS, Pope SB (1992) J Fluid Mech 234:247–277

    Article  Google Scholar 

  60. Yeung PK (2002) Ann Rev Fluid Mech 34:115–142

    Article  Google Scholar 

  61. Pope SB (1985) Prog Energy Combust Sci 11:119–192

    Article  Google Scholar 

  62. Toschi F, Bodenschatz E (2009) Ann Rev Fluid Mech 41:375–404

    Article  Google Scholar 

  63. Pope SB, Cheng WK (1989) Symp (International) Combust 22:781–789

    Article  Google Scholar 

  64. Uranakara HA, Chaudhuri S, Dave HL, Arias PG, Im HG (2016) Combust Flame 163:220–240

    Article  Google Scholar 

  65. Chen JH, Im HG (1998) Correlation of flame speed with stretch in turbulent premixed methane/air flames. In: Symposium (International) on combustion. Elsevier, pp 819–826

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swetaprovo Chaudhuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chaudhuri, S. (2017). Global and Local Viewpoints to Analyze Turbulence-Premixed Flame Interaction. In: Agarwal, A., De, S., Pandey, A., Singh, A. (eds) Combustion for Power Generation and Transportation. Springer, Singapore. https://doi.org/10.1007/978-981-10-3785-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3785-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3784-9

  • Online ISBN: 978-981-10-3785-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics