Skip to main content

A Review on Autoignition in Laminar and Turbulent Nonpremixed Flames

  • Chapter
  • First Online:
Combustion for Power Generation and Transportation

Abstract

This chapter presents a condensed review on the autoignition in laminar and turbulent nonpremixed flames. Both experimental and numerical aspects are discussed. Fundamental studies on autoignition in turbulent flows revealed that random ignition spots are initially observed in the lean mixtures where the scalar dissipation rate is low. The mixture fraction corresponding to this lean mixture is usually referred as the “most reactive mixture fraction”. The increase in initial turbulent intensity and mixing delays autoignition. For most of the fuels, autoignition is observed as a two-stage process with a negative temperature coefficient. Besides, the physical and chemical properties of the fuels, the complex chemical kinetics also affect auto-ignition as well as combustion characteristics. Autoignition is also a dominant flame stabilization mechanism at the base of the lifted flames. Fundamental experimental investigations on autoignition in turbulent flows are very much limited, and most of the previous work is specifically focused on the Berkley vitiated coflow burner and the Cambridge burner. The combustion models developed so far can capture the trends observed in the experiments and the direct numerical simulation (DNS) studies. However, none of the combustion models developed so far can capture the trends quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNS:

Direct numerical simulation

HCCI:

Homogeneous charge compression ignition

LPP:

Lean premixed pre-vaporized

DME:

Dimethyl ether

CI:

Compression ignition

PM:

Particulate matter

RCM:

Rapid compression machine

NTC:

Negative temperature coefficient

MILD:

Moderate and intense low oxygen dilution

RANS:

Reynolds averaged Navier Stokes simulation

LES:

Large eddy simulation

CMC:

Conditional moment closure

PDF:

Probability density function

IEM:

Interaction by exchange with the mean

EMST:

Euclidean minimum spanning tree

HRR:

Heat release rate

Y I :

Mass fraction of species I

N :

Scalar dissipation

Z :

Mixture fraction

\( \eta \) :

Sample space of mixture fraction

\( \xi \) :

Conditional variable

\( Q(\eta ,{\mathbf{x}},t) \) :

Conditional expectation

\( \dot{\omega } \) :

Reaction rate

\( \widetilde{P}(\xi ,\chi ,{\mathbf{x}},t) \) :

Joint scalar PDF

References

  1. Cabra R, Myhrvold T, Chen JY, Dibble RW, Karpetis AN, Barlow RS (2002) Simultaneous laser Raman-Rayleigh-Lif measurements and numerical modeling results of a lifted turbulent H-2/N-2 jet flame in a vitiated coflow. Proc Combust Inst 29:1881–1888

    Article  Google Scholar 

  2. Markides CN, Mastorakos E (2005) An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proc Combust Inst 30:883–891

    Article  Google Scholar 

  3. Markides CN, De Paola G, Mastorakos E (2007) Measurements and simulations of mixing and autoignition of an n-heptane plume in a turbulent flow of heated air. Exp Therm Fluid Sci 31:393–401

    Article  Google Scholar 

  4. Gordon RL, Masri AR, Mastorakos E (2008) Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combust Flame 155:181–195

    Article  Google Scholar 

  5. Gordon RL, Masri AR, Mastorakos E (2009) Heat release rate as represented by [OH] x [CH2O] and its role in autoignition. Combust Theory Model 13:645–670

    Article  Google Scholar 

  6. Park SH, Lee CS (2014) Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Convers Manag 86:848–863

    Article  Google Scholar 

  7. Das LM (1990) Fuel induction techniques for a hydrogen operated engine. Int J Hydrog Energy 15:833–842

    Article  Google Scholar 

  8. Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156:497–511

    Article  Google Scholar 

  9. Carlier M, Corre C, Minetti R, Pauwels JF, Ribaucour M, Sochet LR (1991) Autoignition of butane: a burner and a rapid compression machine study. Symp (Int) Combust 23:1753–1758

    Article  Google Scholar 

  10. Shi Z, Zhang H, Liu H, Lu H, Li J, Gao X (2015) Effects of buffer gas composition on autoignition of dimethyl ether. Energies 8:10198

    Article  Google Scholar 

  11. Pitz WJ, Wilk RD, Westbrook CK, Cernansky NP (1988) Western States Section of the Combustion Institute

    Google Scholar 

  12. Minetti R, Ribaucour M, Carlier M, Fittschen C, Sochet LR (1994) Experimental and modeling study of oxidation and autoignition of butane at high-pressure. Combust Flame 96:201–211

    Article  Google Scholar 

  13. Kukkadapu G, Weber BW, Sung CJ (2015) Autoignition study of tetralin in a rapid compression machine at elevated pressures and low-to-intermediate temperatures. Fuel 159:436–445

    Article  Google Scholar 

  14. Yetter RA, Dryer FL, Rabitz H (1991) Flow reactor studies of carbon-monoxide hydrogen oxygen kinetics. Combust Sci Technol 79:129–140

    Article  Google Scholar 

  15. Schonborn A, Sayad P, Konnov AA, Klingmann J (2014) OH*-chemiluminescence during autoignition of hydrogen with air in a pressurised turbulent flow reactor. Int J Hydrog Energy 39:12166–12181

    Article  Google Scholar 

  16. Schonborn A, Sayad P, Konnov AA, Klingmann J (2014) Autoignition of dimethyl ether and air in an optical flow-reactor. Energy Fuel 28:4130–4138

    Article  Google Scholar 

  17. Schonborn A, Sayad P, Konnov AA, Klingmann J (2013) Visualisation of propane autoignition in a turbulent flow reactor using OH* chemiluminescence imaging. Combust Flame 160:1033–1043

    Article  Google Scholar 

  18. Beerer DJ, McDonell VG (2008) Autoignition of hydrogen and air inside a continuous flow reactor with application to lean premixed combustion, J Eng Gas Turb Power 130

    Google Scholar 

  19. Oehlschlaeger MA, Steinberg J, Westbrook CK, Pitz WJ (2009) The autoignition of iso-cetane at high to moderate temperatures and elevated pressures: shock tube experiments and kinetic modeling. Combust Flame 156:2165–2172

    Article  Google Scholar 

  20. Wang WJ, Oehlschlaeger MA (2012) A shock tube study of methyl decanoate autoignition at elevated pressures. Combust Flame 159:476–481

    Article  Google Scholar 

  21. Mastorakos E (2009) Ignition of turbulent non-premixed flames. Prog Energy Combust 35:57–97

    Article  Google Scholar 

  22. Sreedhara S, Lakshmisha KN (2000) Direct numerical simulation of autoignition in a non-premixed, turbulent medium. Proc Combust Inst 28:25–33

    Article  Google Scholar 

  23. Fotache CG, Kreutz TG, Zhu DL, Law CK (1995) An experimental study of ignition in nonpremixed counterflowing hydrogen versus heated air. Combust Sci Technol 109:373–393

    Article  Google Scholar 

  24. Fotache CG, Kreutz TG, Law CK (1997) Ignition of hydrogen-enriched methane by heated air. Combust Flame 110:429–440

    Article  Google Scholar 

  25. Zheng XL, Lu TF, Law CK, Westbrook CK, Curran HJ (2005) Experimental and computational study of nonpremixed ignition of dimethyl ether in counterflow. Proc Combust Inst 30:1101–1109

    Article  Google Scholar 

  26. Sepman A, Abtahizadeh E, Mokhov A, van Oijen J, Levinsky H, de Goey P (2013) Experimental and numerical studies of the effects of hydrogen addition on the structure of a laminar methane-nitrogen jet in hot coflow under MILD conditions. Int J Hydrog Energy 38:13802–13811

    Article  Google Scholar 

  27. Sepman AV, Abtahizadeh SE, Mokhov AV, van Oijen JA, Levinsky HB, de Goey LPH (2013) Numerical and experimental studies of the NO formation in laminar coflow diffusion flames on their transition to MILD combustion regime. Combust Flame 160:1364–1372

    Article  Google Scholar 

  28. Cabra R, Chen JY, Dibble RW, Karpetis AN, Barlow RS (2005) Lifted methane-air jet flames in a vitiated coflow. Combust Flame 143:491–506

    Article  Google Scholar 

  29. Markides CN, Mastorakos E (2011) Experimental investigation of the effects of turbulence and mixing on autoignition chemistry. Flow Turbul Combust 86:585–608

    Article  MATH  Google Scholar 

  30. Roubaud A, Lemaire O, Minetti R, Sochet LR (2000) High pressure auto-ignition and oxidation mechanisms of o-xylene, o-ethyltoluene, and n-butylbenzene between 600 and 900 K. Combust Flame 123:561–571

    Article  Google Scholar 

  31. Johannessen B, North A, Dibble R, Lovas T (2015) Experimental studies of autoignition events in unsteady hydrogen-air flames. Combust Flame 162:3210–3219

    Article  Google Scholar 

  32. Papageorge MJ, Arndt C, Fuest F, Meier W, Sutton JA (2014) High-speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto-igniting in high-temperature, vitiated co-flows, Exp Fluids 55

    Google Scholar 

  33. Fast G, Kuhn D, Class AG, Maas U (2009) Auto-ignition during instationary jet evolution of dimethyl ether (DME) in a high-pressure atmosphere. Combust Flame 156:200–213

    Article  Google Scholar 

  34. Oldenhof E, Tummers MJ, van Veen EH, Roekaerts DJEM (2012) Transient response of the Delft jet-in-hot coflow flames. Combust Flame 159:697–706

    Article  Google Scholar 

  35. Z. Chen, M. Konno, M. Oguma, T. Yanai, Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine, SAE International, 2000

    Google Scholar 

  36. Venkatesan M, Moorthi NSV, Karthikeyan R, Manivannan A (2014) Experimental study on hydrous methanol fuelled hcci engine using air pre-heater assisted controlled autoignition. Trans Famena 38:53–66

    Google Scholar 

  37. Maurya RK, Agarwal AK (2014) Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine. Fuel Process Technol 126:30–48

    Article  Google Scholar 

  38. Pope SB (1985) Pdf methods for turbulent reactive flows. Prog Energ Combust 11:119–192

    Article  Google Scholar 

  39. Peters N (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust 10:319–339

    Article  Google Scholar 

  40. Veynante D, Vervisch L (2002) Turbulent combustion modeling. Prog Energy Combust 28:193–266

    Article  Google Scholar 

  41. Peters N (1999) The turbulent burning velocity for large-scale and small-scale turbulence. J Fluid Mech 384:107–132

    Article  MATH  Google Scholar 

  42. Subramaniam S, Pope SB (1998) A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust Flame 115:487–514

    Article  Google Scholar 

  43. Subramaniam S, Pope SB (1999) Comparison of mixing model performance for nonpremixed turbulent reactive flow. Combust Flame 117:732–754

    Article  Google Scholar 

  44. Bilger RW (2000) Future progress in turbulent combustion research. Prog Energy Combust 26:367–380

    Article  Google Scholar 

  45. Klimenko AY, Bilger RW (1999) Conditional moment closure for turbulent combustion. Prog Energy Combust 25:595–687

    Article  Google Scholar 

  46. Sreedhara S, Lakshmisha KN (2002) Assessment of conditional moment closure models of turbulent autoignition using DNS data. Proc Combust Inst 29:2069–2077

    Article  Google Scholar 

  47. Kronenburg A (2004) Double conditioning of reactive scalar transport equations in turbulent nonpremixed flames. Phys Fluids 16:2640–2648

    Article  MATH  Google Scholar 

  48. Sreedhara S, Lakshmisha KN (2002) Autoignition in a non-premixed medium: DNS studies on the effects of three-dimensional turbulence. Proc Combust Inst 29:2051–2059

    Article  Google Scholar 

  49. Mastorakos E, Baritaud TA, Poinsot TJ (1997) Numerical simulations of autoignition in turbulent mixing flows. Combust Flame 109:198–223

    Article  Google Scholar 

  50. Bansal G, Mascarenhas A, Chen JH (2015) Direct numerical simulations of autoignition in stratified dimethyl-ether (DME)/air turbulent mixtures. Combust Flame 162:688–702

    Article  Google Scholar 

  51. Jones WP, Navarro-Martinez S (2007) Large eddy simulation of autoignition with a subgrid probability density function method. Combust Flame 150:170–187

    Article  Google Scholar 

  52. Domingo P, Vervisch L, Veynante D (2008) Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust Flame 152:415–432

    Article  Google Scholar 

  53. Han W, Raman V, Chen Z (2016) LES/PDF modeling of autoignition in a lifted turbulent flame: analysis of flame sensitivity to differential diffusion and scalar mixing time-scale. Combust Flame 171:69–86

    Article  Google Scholar 

  54. Schulz O, Jaravel T, Poinsot T, Cuenot B, Noiray N (2016) A criterion to distinguish autoignition and propagation applied to a lifted methane–air jet flame, P Combust Inst, doi:10.1016/j.proci.2016.08.022

  55. Deng SL, Zhao P, Mueller ME, Law CK (2015) Autoignition-affected stabilization of laminar nonpremixed DME/air coflow flames. Combust Flame 162:3437–3445

    Article  Google Scholar 

  56. Deng SL, Zhao P, Mueller ME, Law CK (2015) Stabilization of laminar nonpremixed DME/air coflow flames at elevated temperatures and pressures. Combust Flame 162:4471–4478

    Article  Google Scholar 

  57. Patwardhan SS, Lakshmisha KN (2008) Autoignition of turbulent hydrogen jet in a coflow of heated air. Int J Hydrog Energy 33:7265–7273

    Article  Google Scholar 

  58. Wu ZJ, Zhang Q, Bao TT, Li LG, Deng J, Hu ZJ (2016) Experimental and numerical study on ethanol and dimethyl ether lifted flames in a hot vitiated co-flow. Fuel 184:620–628

    Article  Google Scholar 

  59. Kong SC (2007) A study of natural gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics. Fuel 86:1483–1489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Ghai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ghai, S.K., De, S. (2017). A Review on Autoignition in Laminar and Turbulent Nonpremixed Flames. In: Agarwal, A., De, S., Pandey, A., Singh, A. (eds) Combustion for Power Generation and Transportation. Springer, Singapore. https://doi.org/10.1007/978-981-10-3785-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3785-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3784-9

  • Online ISBN: 978-981-10-3785-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics