Skip to main content

Syngas as SI Engine Fuel: Combustion Perspective

  • Chapter
  • First Online:
Combustion for Power Generation and Transportation

Abstract

Depletion of conventional energy resources and the adverse impact of fossil fuel combustion on environment threaten the sustainable development potential in the energy sector. Biomass can be an alternative, renewable fuel to overcome these negativities. Secondary fuels, derived from biomass, can be used to run the transportation engines. Syngas, which is obtained from biomass gasification, is a potential fuel for the spark ignition engines. However, certain combustion characteristics of the fuel are needed to be studied for the efficient and smooth operation of the engines with the alternative fuel. Laminar burning velocity and ignition delay are two such important characteristics, which influence flame propagation and abnormal combustion, like detonation and surface ignition, inside the engine cylinder. Determination of these combustion characteristics shows considerable deviation between conventional gasoline fuel and syngas (50% H2 and 50% CO). However, blending a small amount of conventional hydrocarbons bring the characteristic parameters with syngas fuel close to those of gasoline. Both physical properties and chemical characteristics are attributed as the reasons behind such variations in the combustion behaviour. Use of syngas is found to decrease the emission levels compared to gasoline in many respect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52:797–809

    Article  Google Scholar 

  2. NITI AAYOG. http://niti.gov.in/content/overview-sustainable-development-goals. Accessed 04 Nov 2016

  3. India Energy Outlook (2015) World energy outlook special report

    Google Scholar 

  4. Society of Indian Automobile Manufactures. http://www.siamindia.com/statistics.aspx?mpgid=8&pgidtrail=14. Accessed 04 Nov 2016

  5. Pudasainee D, Paur HR, Fleck S et al (2014) Trace metals emission in syngas from biomass gasification. Fuel Process Technol 120:54–60

    Article  Google Scholar 

  6. Hamelinck CN, Faaij APC (2006) Outlook for advanced biofuels. Energy Policy 34(17):3268–3283

    Article  Google Scholar 

  7. Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Article  Google Scholar 

  8. Bhattacharya A, Bhattacharya A, Datta A (2012) Modeling of hydrogen production process from biomass using oxygen blown gasification. Int J Hydrog Energy 37(24):18782–18790

    Article  Google Scholar 

  9. Bhattacharya A, Das A, Datta A (2014) Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification. Energy 69:525–533

    Article  Google Scholar 

  10. EUCAR-CONCAWE-JRC. http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu.about-jec/files/documents/wtw3_wtw_report_eurformat.pdf. Accessed 04 Nov 2016

  11. Kırtay E (2011) Recent advances in production of hydrogen from biomass. Energy Converse Manag 52(4):1778–1789

    Article  Google Scholar 

  12. Mondal P, Dang GS, Garg MO (2011) Syngas production through gasification and cleanup for downstream applications—recent developments. Fuel Process Technol 92(8):1395–1410

    Article  Google Scholar 

  13. Samiran NA, Jaafar MN, Ng JH et al (2016) Progress in biomass gasification technique–with focus on Malaysian palm biomass for syngas production. Renew Sustain Energy Rev 62:1047–1062

    Article  Google Scholar 

  14. Bhattacharya SC, Hla SS, Pham HL (2001) A study on a multi-stage hybrid gasifier-engine system. Biomass Bioenergy 21(6):445–460

    Article  Google Scholar 

  15. Öhrman OG, Weiland F, Pettersson E et al (2013) Pressurized oxygen blown entrained flow gasification of a biorefinery lignin residue. Fuel Process Technol 115:130–138

    Article  Google Scholar 

  16. Shah A, Srinivasan R, To SD et al (2010) Performance and emissions of a spark-ignited engine driven generator on biomass based syngas. Bioresour Technol 101(12):4656–4661

    Article  Google Scholar 

  17. Roy PC, Datta A, Chakraborty N (2010) Assessment of cow dung as a supplementary fuel in a downdraft biomass gasifier. Renew Energy 35(2):379–386

    Article  Google Scholar 

  18. Roy PC, Datta A, Chakraborty N (2013) An assessment of different biomass feedstocks in a downdraft gasifier for engine application. Fuel 106:864–868

    Article  Google Scholar 

  19. MartínezJD Mahkamov K, Andrade RV et al (2012) Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew Energy 38(1):1–9

    Article  Google Scholar 

  20. Li H, Karim GA (2005) Exhaust emissions from an SI engine operating on gaseous fuel mixtures containing hydrogen. Int J Hydrog Energy 30(13):1491–1499

    Article  Google Scholar 

  21. Sridhar G, Paul PJ, Mukunda HS (2001) Biomass derived producer gas as a reciprocating engine fuel—an experimental analysis. Biomass Bioenergy 21(1):61–72

    Article  Google Scholar 

  22. Pulkrabek WW (1997) Engineering fundamentals of the internal combustion engine. Prentice Hall, New Jersey

    Google Scholar 

  23. Kee RJ, Grcar JF, Smooke MD et al (1985) PREMIX: a Fortran program for modeling steady laminar one-dimensional premixed flames. Sandia National Laboratories Report SAND85-8249

    Google Scholar 

  24. Li S, Petzold L (2000) Software and algorithms for sensitivity analysis of large-scale differential algebraic systems. J Comput Appl Math 125(1):131–145

    Article  MathSciNet  MATH  Google Scholar 

  25. Bhattacharya A, Datta A, Wensing M (2016) Laminar burning velocity and ignition delay time for premixed isooctane–air flames with syngas addition. Combust Theor Model 1–20

    Google Scholar 

  26. Yoo CS, Luo Z, Lu T et al (2013) A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions. Proc Combust Inst 34(2):2985–2993

    Article  Google Scholar 

  27. Mehl M, Pitz WJ, Sjӧberg M et al (2009) Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine. SAE Technical Paper No. 2009-01-1806

    Google Scholar 

  28. Baloo M, Dariani BM, Akhlaghi M et al (2015) Effect of iso-octane/methane blend on laminar burning velocity and flame instability. Fuel 144:264–273

    Article  Google Scholar 

  29. Liu K, Fu J, Deng B et al (2014) The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends. Energy 73:703–715

    Article  Google Scholar 

  30. Bhattacharya A, Banerjee DK, Mamaikin D et al (2015) Effects of exhaust gas dilution on the laminar burning velocity of real-world gasoline fuel flame in air. Energy Fuels 29:6768–6779

    Article  Google Scholar 

  31. Jerzembeck S, Peters N, Pepiot-Desjardins P et al (2009) Laminar burning velocities at high pressure for primary reference fuels and gasoline: experimental and numerical investigation. Combust Flame 156(2):292–301

    Article  Google Scholar 

  32. Dirrenberger P, Glaude PA, Bounaceur R et al (2014) Laminar burning velocity of gasolines with addition of ethanol. Fuel 115:162–169

    Article  Google Scholar 

  33. Kelley AP, Liu W, Xin YX et al (2011) Laminar flame speeds, non-premixed stagnation ignition, and reduced mechanisms in the oxidation of iso-octane. Proc Combust Inst 33(1):501–508

    Article  Google Scholar 

  34. Sakai Y, Ozawa H, Ogura T et al (2007) Effects of toluene addition to primary reference fuel at high temperature. SAE Technical Paper No. 2007-01-4104

    Google Scholar 

  35. Oehlschlaeger MA, Davidson DF, Herbon JT et al (2004) Shock tube measurements of branched alkane ignition times and OH concentration time histories. Int J Chem Kinet 36(2):67–78

    Article  Google Scholar 

  36. Minetti R, Carlier M, Ribaucour M et al (1996) Comparison of oxidation and autoignition of the two primary reference fuels by rapid compression. In: Paper presented at symposium (international) on combustion, December 1996, vol 31

    Google Scholar 

  37. Goldsborough SS (2009) A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region. Combust Flame 156(6):1248–1262

    Article  Google Scholar 

  38. Jain S, Li D, Aggarwal SK (2013) Effect of hydrogen and syngas addition on the ignition of iso-octane/air mixtures. Int J Hydrog Energy 38(10):4163–4176

    Article  Google Scholar 

  39. Law CK (2006) Combustion physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Krejci MC, Mathieu O, Vissotski AJ et al (2013) Laminar flame speed and ignition delay time data for the kinetic modeling of hydrogen and syngas fuel blends. J Eng Gas Turbines Power 135:21503–21509

    Article  Google Scholar 

  41. Sun H, Yang SI, Jomaas G et al (2007) High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc Combust Inst 31(1):439–446

    Article  Google Scholar 

  42. Bouvet N, Chauveau C, Gökalp I et al (2011) Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures. Proc Combust Inst 33(1):913–920

    Article  Google Scholar 

  43. Frassoldati A, Faravelli T, Ranzi E (2007) The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int J Hydrog Energy 32(15):3471–3485

    Article  Google Scholar 

  44. Glassman I, Yetter RA, Glumac NG (2014) Combustion. Academic press, London

    Google Scholar 

  45. Homdoung N, Tippayawong N, Dussadee N (2015) Performance and emissions of a modified small engine operated on producer gas. Energy Convers Manag 94:286–292

    Article  Google Scholar 

  46. Dasappa S, Paul PJ, Mukunda HS et al (2004) Biomass gasification technology—route to meet energy needs. Curr Sci 87(7):908–916

    Google Scholar 

  47. Mustafi NN, Miraglia YC, Raine RR et al (2006) Spark-ignition engine performance with ‘Powergas’ fuel (mixture of CO/H2): a comparison with gasoline and natural gas. Fuel 85(12):1605–1612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bhattacharya, A., Datta, A. (2017). Syngas as SI Engine Fuel: Combustion Perspective. In: Agarwal, A., De, S., Pandey, A., Singh, A. (eds) Combustion for Power Generation and Transportation. Springer, Singapore. https://doi.org/10.1007/978-981-10-3785-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3785-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3784-9

  • Online ISBN: 978-981-10-3785-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics