Optimized Task Scheduling Using Differential Evolutionary Algorithm

  • Somesh Singh Thakur
  • Siddharth Singh
  • Pratibha SinghEmail author
  • Abhishek Goyal
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 553)


Task scheduling plays a key role for efficiently assigning resources to tasks and performing multitasking. In heterogeneous environments, hard computing task scheduling does not give optimal solution. There are many soft computing techniques used for task scheduling such as evolutionary algorithm which includes genetic algorithm, Differential Evolution (DE), metaheuristic, and swarm intelligence like particle swarm intelligence and ant colony optimization. Genetic Algorithms give locally optimum solution but get stuck in nonoptimal conditions and suffers from quick convergence. DE does not get stuck in local minima and gives a globally optimum solution. Rate of convergence of DE is also slower than GAs and increases with problem size. We have implemented DE for solving task scheduling problem and results demonstrated significant improvement in the fitness of solution with varying parameters as mutation factor, crossover probability, number of iterations, and population. The main aim of this paper is to visualize the effect of variation in various parameters of DE algorithm on the solution of task allocation problem.


Differential evolution Evolutionary computation Task scheduling 


  1. 1.
    Dervis KARABOGA and Selcuk ÖKDEM; “A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm.”, Turk J Elec Engin, VOL. 12, NO. 1 2004, TUBITAKGoogle Scholar
  2. 2.
    Krzysztof Rzadca and Franciszek Seredynski; “Heterogeneous multiprocessor scheduling with differential evolution.”, 2005 IEEE Congress on Evolutionary Computation (Volume: 3)., Date of Conference: 2–5 Sept. 2005, Page(s):2840–2847 Vol. 3 ISSN: 1089-778X, Print ISBN: 0-7803-9363-5Google Scholar
  3. 3.
    Qinma Kang and Hong He; “A Novel Discrete Differential Evolution Algorithm for Task Scheduling in Heterogeneous Computing Systems”, Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009Google Scholar
  4. 4.
    Krömer, Pavel, et al. “Scheduling Independent Tasks on Heterogeneous Distributed Environments by Differential Evolution.” INCoS. 2009Google Scholar
  5. 5.
    Kalra, Mala, and Sarbjeet Singh. “A review of metaheuristic scheduling techniques in cloud computing.” Egyptian Informatics Journal 16.3 (2015): 275–295Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Somesh Singh Thakur
    • 1
  • Siddharth Singh
    • 1
  • Pratibha Singh
    • 1
    Email author
  • Abhishek Goyal
    • 1
  1. 1.ABES Engineering CollegeGhaziabadIndia

Personalised recommendations