Skip to main content

Growth and Optical Properties of GaN-Based Non- and Semipolar LEDs

  • Chapter
  • First Online:
III-Nitride Based Light Emitting Diodes and Applications

Part of the book series: Topics in Applied Physics ((TAP,volume 133))

Abstract

The development of smooth (0001) GaN films on c-plane sapphire [1] and the activation of p-dopants in GaN [2] led very quickly to the realization of high brightness InGaN LEDs on c-plane sapphire substrates [3, 4]. Already at the end of the last century blue and green LEDs with tens and hundreds of milli-Watt output power levels were demonstrated. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of c-plane InGaN QW LEDs has been pushed into the yellow and even red spectral range. Although the performance characteristics of c-plane LEDs seem excellent, the strong polarization fields at InGaN/GaN heterointerfaces can lead to a significant deterioration of the device performance. This polarization field is suppressed or reduced in LEDs with InGaN/GaN heterointerfaces of nonpolar or semipolar orientation, respectively. Triggered by the first demonstration of nonpolar GaN quantum wells grown on LiAlO\(_2\) by Waltereit and colleagues in 2000 [5], impressive advancements in the field of non- and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields exhibiting exceptional optical properties have been demonstrated, and the fundamental understanding of polar, semipolar, and nonpolar nitrides has made significant leaps forward. This chapter is intended to provide an overview on the epitaxial growth and optical properties of group-III-nitride LEDs on non- and semipolar surface orientations [6]. After introducing the physical origins of piezoelectric and spontaneous polarization effects in group-III nitrides, different approaches for the heteroepitaxial growth of low defect density non- and semipolar (Al, In)GaN layers and (Al, In)GaN/GaN heterointerfaces are presented, followed by a discussion of the effect of surface orientation on the indium incorporation efficiency in InGaN layers and quantum wells. In the third section, the polarized light emission characteristics and the optical properties of non- and semipolar InGaN QWs are discussed and finally the performance characteristics of non- and semipolar LEDs are presented including the effects on droop, wavelength shift, and external quantum efficiencies of state-of-the-art devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, N. Sawaki, Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga\(_{1-{\rm {x}}}\)Al\(_{\rm {x}}\)N \((0 < x\,{\le }\,0.4)\) films grown on sapphire substrate by MOVPE. J. Cryst. Growth 98, 209–219 (1989)

    Google Scholar 

  2. I. Akasaki, H. Amano, Breakthroughs in improving crystal quality of GaN and invention of the p-n junction blue-light-emitting diode. Jpn. J. Appl. Phys. 45, 9001–9010 (2006)

    Article  ADS  Google Scholar 

  3. S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64(13), 1687 (1994)

    Article  ADS  Google Scholar 

  4. S. Nakamura, M. Senoh, N. Iwasa, S.-I. Nagahama, High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys. 34, L797–L799 (1995)

    Article  ADS  Google Scholar 

  5. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000)

    Article  ADS  Google Scholar 

  6. J. Han, M. Kneissl, Non-polar and semipolar nitride semiconductors. Semicond. Sci. Technol. 27, 020301 (2012)

    Article  ADS  Google Scholar 

  7. F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56(16), 10024–10027 (1997)

    Article  ADS  Google Scholar 

  8. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L. Eastman, Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys.: Condens. Matter 14, 3399–3434 (2002)

    ADS  Google Scholar 

  9. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222 (1999)

    Article  ADS  Google Scholar 

  10. D.S. Sizov, R. Bhat, A. Zakharian, J. Napierala, K. Song, D. Allen, C.-E. Zah, Impact of carrier transport on aquamarine-green laser performance. Appl. Phys. Express 3, 122101 (2010)

    Article  ADS  Google Scholar 

  11. D.S. Sizov, R. Bhat, A. Zakharian, K. Song, D.E. Allen, S. Coleman, C.-E. Zah, Carrier transport in InGaN MQWs of aquamarine- and green-laser diodes. IEEE J. Sel. Top. Quantum Electron. 17, 1390–1401 (2011)

    Article  Google Scholar 

  12. W.G. Scheibenzuber, GaN-Baser Laser Diodes-Towards Longer Wavelengths and Short Pulses (Springer, Heidelberg, 2012)

    Book  Google Scholar 

  13. S. Park, S. Chuang, Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B 59(7), 4725–4737 (1999)

    Article  ADS  Google Scholar 

  14. M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Brückner, F. Scholz, Piezoelectric fields in GaInN/GaN quantum wells on different crystal facets. Appl. Phys. Lett. 89(24), 242112 (2006)

    Article  ADS  Google Scholar 

  15. M. Feneberg, K. Thonke, T. Wunderer, F. Lipski, F. Scholz, Piezoelectric polarization of semipolar and polar GaInN quantum wells grown on strained GaN templates. J. Appl. Phys. 107(10), 103517 (2010)

    Article  ADS  Google Scholar 

  16. M. Funato, M. Ueda, D. Inoue, Y. Kawakami, Y. Narukawa, T. Mukai, Experimental and theoretical considerations of polarization field direction in semipolar InGaN/GaN quantum wells. Appl. Phys. Express 3, 071001 (2010)

    Article  ADS  Google Scholar 

  17. T. Paskova, K. Evans, GaN substrates–progress, status, and prospects. IEEE J. Sel. Top. Quantum Electron. 15, 1041–1052 (2009)

    Article  Google Scholar 

  18. K. Fujito, S. Kubo, I. Fujimura, Development of bulk GaN crystals and nonpolar/semipolar substrates by HVPE. MRS Bull. 34, 313–317 (2009)

    Article  Google Scholar 

  19. K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushima, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. Hara, Y. Kumagai, A. Koukitu, H. Seki, Preparation of large freestanding GaN substrates by hydride vapor phase epitaxy using GaAs as a starting substrate. Jpn. J. Appl. Phys. 40(Part 2, No. 2B), L140–L143 (2001)

    Google Scholar 

  20. K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, H. Seki, Growth and characterization of freestanding GaN substrates. J. Cryst. Growth 237–239, Part 2(0), 912–921 (2002). The Thirteenth International Conference on Crystal Growth in Conjunction with the Eleventh International Conference on Vapor Growth and Epitaxy

    Google Scholar 

  21. R. Kucharski, M. Zajac, R. Doradzinski, M. Rudzinski, R. Kudrawiec, R. Dwilinski, Non-polar and semi-polar ammonothermal GaN substrates. Semicond. Sci. Technol. 27(2), 024007 (2012)

    Article  ADS  Google Scholar 

  22. M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, S.P. DenBaars, Structural characterization of nonpolar \((11\overline{2}0)\) a-plane GaN thin films grown on \((1\overline{1}02)\) r-plane sapphire. Appl. Phys. Lett. 81(3), 469–471 (2002)

    Article  ADS  Google Scholar 

  23. M.D. Craven, F. Wu, A. Chakraborty, B. Imer, U.K. Mishra, S.P. DenBaars, J.S. Speck, Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition. Appl. Phys. Lett. 84(8), 1281–1283 (2004)

    Article  ADS  Google Scholar 

  24. T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Characterization of planar semipolar gallium nitride films on spinel substrates. Jpn. J. Appl. Phys. 44(29), L920–L922 (2005)

    Article  ADS  Google Scholar 

  25. T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S. Nakamura, Characterization of planar semipolar gallium nitride films on sapphire substrates. Jpn. J. Appl. Phys. 45(6), L154–L157 (2006)

    Article  ADS  Google Scholar 

  26. S. Ploch, M. Frentrup, T. Wernicke, M. Pristovsek, M. Weyers, M. Kneissl, Orientation control of GaN \(\{11\overline{2}2\}\) and \(\{10\overline{1}3\}\) grown on \((10\overline{1}0)\) sapphire by metal-organic vapor phase epitaxy. J. Cryst. Growth 312(15), 2171–2174 (2010)

    Article  ADS  Google Scholar 

  27. S. Ploch, J.B. Park, J. Stellmach, T. Schwaner, M. Frentrup, T. Niermann, T. Wernicke, M. Pristovsek, M. Lehmann, M. Kneissl, Single phase \(\{11\overline{2}2\}\) GaN on \((10\overline{1}0)\) sapphire grown by metal-organic vapor phase epitaxy. J. Cryst. Growth 331(1), 25–28 (2011)

    Article  ADS  Google Scholar 

  28. N. Okada, K. Tadatomo, Characterization and growth mechanism of nonpolar and semipolar GaN layers grown on patterned sapphire substrates. Semicond. Sci. Technol. 27(2), 024003 (2012)

    Article  ADS  Google Scholar 

  29. N. Okada, H. Oshita, K. Yamane, K. Tadatomo, High-quality \(\{20\overline{2}1\}\) GaN layers on patterned sapphire substrate with wide-terrace. Appl. Phys. Lett. 99(24), 242103 (2011)

    Article  ADS  Google Scholar 

  30. T. Kato, Y. Honda, M. Yamaguchi, N. Sawaki, Fabrication of GaN/AlGaN heterostructures on a (111) Si substrate by selective MOVPE. J. Cryst. Growth 237–239, Part 2(0), 1099–1103 (2002). The Thirteenth International Conference on Crystal Growth in Conjunction with the Eleventh International Conference on Vapor Growth and Epitaxy

    Google Scholar 

  31. N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, M. Yamaguchi, Growth and properties of semi-polar GaN on a patterned silicon substrate. J. Cryst. Growth 311(10), 2867–2874 (2009)

    Article  ADS  Google Scholar 

  32. R. Ravash, P. Veit, M. Müller, G. Schmidt, A. Dempewolf, T. Hempel, J. Bläsing, F. Bertram, A. Dadgar, J. Christen, A. Krost, Growth and stacking fault reduction in semi-polar GaN films on planar Si(112) and Si(113). Phys. Status Solidi (C) 9(3–4), 507–510 (2012)

    Article  ADS  Google Scholar 

  33. T. Wernicke, S. Ploch, V. Hoffmann, A. Knauer, M. Weyers, M. Kneissl, Surface morphology of homoepitaxial GaN grown on non- and semipolar GaN substrates. Phys. Status Solidi (B) 248(3), 574–577 (2011)

    Article  ADS  Google Scholar 

  34. T. Wernicke, Wachstum von nicht- und semipolaren InAlGaN-Heterostrukturen für hocheffiziente Lichtemitter/Growth of GaN-based Non- and Semipolar Heterostructures for High Efficiency Light Emitters. Dissertation, Technische Universität Berlin (2010)

    Google Scholar 

  35. S. Ploch, T. Wernicke, D.V. Dinh, M. Pristovsek, M. Kneissl, Surface diffusion and layer morphology of \((11\overline{2}2)\) GaN grown by metal-organic vapor phase epitaxy. J. Appl. Phys. 111(3), 033526 (2012)

    Article  ADS  Google Scholar 

  36. R.M. Farrell, E.C. Young, F. Wu, S.P. DenBaars, J.S. Speck, Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices. Semicond. Sci. Technol. 27(2), 024001 (2012)

    Article  ADS  Google Scholar 

  37. T.S. Zheleva, O.-H. Nam, M.D. Bremser, R.F. Davis, Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett. 71(17), 2472–2474 (1997)

    Article  ADS  Google Scholar 

  38. T. Wernicke, U. Zeimer, C. Netzel, F. Brunner, A. Knauer, M. Weyers, M. Kneissl, Epitaxial lateral overgrowth on \((2\overline{11}0)\) a-plane GaN with \([0\overline{1}11]\)-oriented stripes. J. Cryst. Growth 311(10), 2895–2898 (2009). Proceedings of the 2nd International Symposium on Growth of III Nitrides

    Google Scholar 

  39. C. Netzel, T. Wernicke, U. Zeimer, F. Brunner, M. Weyers, M. Kneissl, Near band edge and defect emissions from epitaxial lateral overgrown a-plane GaN with different stripe orientations. J. Cryst. Growth 310(1), 8–12 (2008)

    Article  ADS  Google Scholar 

  40. B. Bastek, F. Bertram, J. Christen, T. Wernicke, M. Weyers, M. Kneissl, A-plane GaN epitaxial lateral overgrowth structures: growth domains, morphological defects, and impurity incorporation directly imaged by cathodoluminescence microscopy. Appl. Phys. Lett. 92(21), 212111 (2008)

    Article  ADS  Google Scholar 

  41. Z.H. Wu, A.M. Fischer, F.A. Ponce, B. Bastek, J. Christen, T. Wernicke, M. Weyers, M. Kneissl, Structural and optical properties of nonpolar GaN thin films. Appl. Phys. Lett. 92(17), 171904 (2008)

    Article  ADS  Google Scholar 

  42. Y. Kawashima, K. Murakami, Y. Abe, N. Okada, K. Tadatomo, Growth mechanism of nonpolar m-plane GaN on maskless patterned a-plane sapphire substrate. Phys. Status Solidi (C) 7(7–8), 2066–2068 (2010)

    Article  ADS  Google Scholar 

  43. A. Dadgar, R. Ravash, P. Veit, G. Schmidt, M. Müller, A. Dempewolf, F. Bertram, M. Wieneke, J. Christen, A. Krost, Eliminating stacking faults in semi-polar GaN by AlN interlayers. Appl. Phys. Lett. 99(2), 021905 (2011)

    Article  ADS  Google Scholar 

  44. F. Scholz, Semipolar GaN grown on foreign substrates: a review. Semicond. Sci. Technol. 27(2), 024002 (2012)

    Article  ADS  Google Scholar 

  45. J.E. Northrup, GaN and InGaN \((11\overline{2}2)\) surfaces: group-III adlayers and indium incorporation. Appl. Phys. Lett. 95(13), 133107 (2009)

    Article  ADS  Google Scholar 

  46. T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, M. Kneissl, Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells. Semicond. Sci. Technol. 27(2), 024014 (2012)

    Article  ADS  Google Scholar 

  47. N.F. Gardner, J.C. Kim, J.J. Wierer, Y.C. Shen, M.R. Krames, Polarization anisotropy in the electroluminescence of m-plane InGaN-GaN multiple-quantum-well light-emitting diodes. Appl. Phys. Lett. 3–5 (2005)

    Google Scholar 

  48. H. Masui, H. Yamada, K. Iso, S. Nakamura, S.P. DenBaars, Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between \((10\overline{1}0)\) and \((10\overline{11})\) planes. Appl. Phys. Lett. 92(9), 091105 (2008)

    Article  ADS  Google Scholar 

  49. L. Schade, U.T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, M. Kneissl, On the optical polarization properties of semipolar InGaN quantum wells. Appl. Phys. Lett. 99(5), 051103 (2011)

    Article  ADS  Google Scholar 

  50. H. Jönen, H. Bremers, T. Langer, U. Rossow, A. Hangleiter, Large optical polarization anisotropy due to anisotropic in-plane strain in m-plane GaInN quantum well structures grown on m-plane 6H-SiC. Appl. Phys. Lett. 100(15), 151905 (2012)

    Article  ADS  Google Scholar 

  51. M. Ueda, M. Funato, K. Kojima, Y. Kawakami, Y. Narukawa, T. Mukai, Polarization switching phenomena in semipolar In\(_x\)Ga\(_{1-x}\)N/GaN quantum well active layers. Phys. Rev. B 78, 2–5 (2008)

    Google Scholar 

  52. S. Chuang, C. Chang, \(k\cdot p\) method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491–2504 (1996)

    Article  ADS  Google Scholar 

  53. W. Scheibenzuber, U. Schwarz, R. Veprek, B. Witzigmann, A. Hangleiter, Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes. Phys. Rev. B 80, 115320 (2009)

    Article  ADS  Google Scholar 

  54. K. Kojima, H. Kamon, M. Funato, Y. Kawakami, Theoretical investigations on anisotropic optical properties in semipolar and nonpolar InGaN quantum wells. Phys. Status Solidi (C) 5, 3038–3041 (2008)

    Article  ADS  Google Scholar 

  55. L. Schade, U.T. Schwarz, T. Wernicke, M. Weyers, M. Kneissl, Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells. Phys. Status Solidi (B) 248, 638–646 (2011)

    Article  ADS  Google Scholar 

  56. T. Ohtoshi, A. Niwa, T. Kuroda, Crystal orientation effect on valence-subband structures in wurtzite-GaN strained quantum wells. Jpn. J. Appl. Phys. Part 2 Lett. 35, 1566–1568 (1996)

    Google Scholar 

  57. L. Schade, U.T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, M. Kneissl, Auger effect in nonpolar quantum wells. Proc. SPIE 8262(0), 82620K–82620K–9 (2012)

    Google Scholar 

  58. H. Masui, H. Asamizu, A. Tyagi, N.F. DeMille, S. Nakamura, S.P. DenBaars, Correlation between optical polarization and luminescence morphology of \((11\overline{2}2)\)-oriented InGaN/GaN quantum-well structures. Appl. Phys. Express 2, 071002 (2009)

    Article  ADS  Google Scholar 

  59. W.G. Scheibenzuber, U.T. Schwarz, Polarization switching of the optical gain in semipolar InGaN quantum wells. Phys. Status Solidi (B) 248, 647–651 (2011)

    Article  ADS  Google Scholar 

  60. C. Roberts, Q. Yan, M.-S. Miao, C.G. Van de Walle, Confinement effects on valence-subband character and polarization anisotropy in \((11\overline{2}2)\) semipolar InGaN/GaN quantum wells. J. Appl. Phys. 111(7), 073113 (2012)

    Article  ADS  Google Scholar 

  61. A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, Strain-induced polarization in wurtzite III-nitride semipolar layers. J. Appl. Phys. 100(2), 023522 (2006)

    Article  ADS  Google Scholar 

  62. M. Funato, D. Inoue, M. Ueda, Y. Kawakami, Y. Narukawa, T. Mukai, Strain states in semipolar III-nitride semiconductor quantum wells. J. Appl. Phys. 107(12), 123501 (2010)

    Article  ADS  Google Scholar 

  63. Q. Yan, P. Rinke, M. Scheffler, C.G. Van de Walle, Role of strain in polarization switching in semipolar InGaN/GaN quantum wells. Appl. Phys. Lett. 97(18), 181102 (2010)

    Article  ADS  Google Scholar 

  64. T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, T. Nakamura, Optical polarization characteristics of InGaN quantum wells for green laser diodes on semi-polar \(\{20\overline{2}1\}\) GaN substrates. Appl. Phys. Express 3(1), 011003 (2010)

    Article  ADS  Google Scholar 

  65. Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R.B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C.G.V. de Walle, J.S. Speck, S.P. DenBaars, S. Nakamura, High optical polarization ratio from semipolar \((20\overline{21})\) blue-green InGaN/GaN light-emitting diodes. Appl. Phys. Lett. 99(5), 051109 (2011)

    Article  ADS  Google Scholar 

  66. H. Masui, H. Yamada, K. Iso, S. Nakamura, S.P. DenBaars, Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure. J. Phys. D: Appl. Phys. 41, 225104 (2008)

    Article  ADS  Google Scholar 

  67. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003)

    Article  ADS  Google Scholar 

  68. E. Kuokstis, J.W. Yang, G. Simin, M.A. Khan, R. Gaska, M.S. Shur, Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells. Appl. Phys. Lett. 80(6), 977–979 (2002)

    Article  ADS  Google Scholar 

  69. M.C. Schmidt, K.-C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S.P. DenBaars, J.S. Speck, High power and high external efficiency \(m\)-plane InGaN light emitting diodes. Jpn. J. Appl. Phys. 46(7), L126–L128 (2007)

    Article  Google Scholar 

  70. Y. Zhao, S. Tanaka, C.-C. Pan, K. Fujito, D. Feezell, J.S. Speck, S.P. DenBaars, S. Nakamura, High-power blue-violet semipolar (\(20\overline{21}\)) InGaN/GaN light-emitting diodes with low efficiency droop at 200 a/cm\(^{2}\). Appl. Phys. Express 4(8), 082104 (2011)

    Article  ADS  Google Scholar 

  71. J. Piprek, Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi (A) 207(10), 2217–2225 (2010)

    Article  ADS  Google Scholar 

  72. Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91(14), 141101 (2007)

    Article  ADS  Google Scholar 

  73. M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91(18), 183507 (2007)

    Article  ADS  Google Scholar 

  74. A. David, M.J. Grundmann, Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett. 96(10), 103504 (2010)

    Article  ADS  Google Scholar 

  75. J. Hader, J.V. Moloney, S.W. Koch, Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes. Appl. Phys. Lett. 96(22), 221106 (2010)

    Article  ADS  Google Scholar 

  76. E. Kioupakis, P. Rinke, K.T. Delaney, C.G.V. de Walle, Indirect auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98(16), 161107 (2011)

    Article  ADS  Google Scholar 

  77. C.-C. Pan, S. Tanaka, F. Wu, Y. Zhao, J.S. Speck, S. Nakamura, S.P. DenBaars, D. Feezell, High-power, low-efficiency-droop semipolar (\(20\overline{21}\)) single-quantum-well blue light-emitting diodes. Appl. Phys. Express 5(6), 062103 (2012)

    Article  ADS  Google Scholar 

  78. M. Krames, O. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, M. Craford, Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3, 160–175 (2007)

    Article  ADS  Google Scholar 

  79. A. Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn, High-power and high-efficiency InGaN-based light emitters. IEEE Trans. Electron Devices 57, 79–87 (2010)

    Article  ADS  Google Scholar 

  80. E. Matioli, S. Brinkley, K.M. Kelchner, S. Nakamura, S. DenBaars, J. Speck, C. Weisbuch, Polarized light extraction in m-plane GaN light-emitting diodes by embedded photonic-crystals. Appl. Phys. Lett. 98(25), 251112 (2011)

    Article  ADS  Google Scholar 

  81. J. Rass, T. Wernicke, W.G. Scheibenzuber, U.T. Schwarz, J. Kupec, B. Witzigmann, P. Vogt, S. Einfeldt, M. Weyers, M. Kneissl, Polarization of eigenmodes in laser diode waveguides on semipolar and nonpolar GaN. Phys. Status Solidi (RRL)—Rapid Res. Lett. 4, 1–3 (2010)

    Google Scholar 

  82. J. Rass, T. Wernicke, S. Ploch, M. Brendel, A. Kruse, A. Hangleiter, W. Scheibenzuber, U.T. Schwarz, M. Weyers, M. Kneissl, Polarization dependent study of gain anisotropy in semipolar InGaN lasers. Appl. Phys. Lett. 99(17), 171105 (2011)

    Article  ADS  Google Scholar 

  83. J.C. Raß, Charakterisierung von InGaN-basierten Lichtemittern auf semipolaren und nichtpolaren Halbleiteroberflächen/Characterization of InGaN-based light emitters on semipolar and nonpolar semiconductor orientations. Dissertation, Technische Universität Berlin (2012)

    Google Scholar 

  84. C.-Y. Huang, A. Tyagi, Y.-D. Lin, M.T. Hardy, P.S. Hsu, K. Fujito, J.-S. Ha, H. Ohta, J.S. Speck, S.P. DenBaars, S. Nakamura, Propagation of spontaneous emission in birefringent m-axis oriented semipolar \((11\overline{2}2)\) (Al, In, Ga)N waveguide structures. Jpn. J. Appl. Phys. 49, 010207 (2010)

    Article  ADS  Google Scholar 

  85. T. Wunderer, P. Bruckner, B. Neubert, F. Scholz, M. Feneberg, F. Lipski, M. Schirra, K. Thonke, Bright semipolar GaInN/GaN blue light emitting diode on side facets of selectively grown GaN stripes. Appl. Phys. Lett. 89(4), 041121 (2006)

    Article  ADS  Google Scholar 

  86. F. Scholz, T. Wunderer, M. Feneberg, K. Thonke, A. Chuvilin, U. Kaiser, S. Metzner, F. Bertram, J. Christen, GaInN-based LED structures on selectively grown semi-polar crystal facets. Phys. Status Solidi (A) 207(6), 1407–1413 (2010)

    Article  ADS  Google Scholar 

  87. T. Wunderer, M. Feneberg, F. Lipski, J. Wang, R.A.R. Leute, S. Schwaiger, K. Thonke, A. Chuvilin, U. Kaiser, S. Metzner, F. Bertram, J. Christen, G.J. Beirne, M. Jetter, P. Michler, L. Schade, C. Vierheilig, U.T. Schwarz, A.D. Dräger, A. Hangleiter, F. Scholz, Three-dimensional GaN for semipolar light emitters. Phys. Status Solidi (B) 248(3), 549–560 (2011)

    Article  ADS  Google Scholar 

  88. S. Jung, Y. Chang, K.-H. Bang, H.-G. Kim, Y.-H. Choi, S.-M. Hwang, K.H. Baik, High brightness nonpolar a-plane (11-20) GaN light-emitting diodes. Semicond. Sci. Technol. 27(2), 024017 (2012)

    Article  ADS  Google Scholar 

  89. A. Chakraborty, B.A. Haskell, S. Keller, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak. Appl. Phys. Lett. 85(22), 5143–5145 (2004)

    Article  ADS  Google Scholar 

  90. A. Chakraborty, T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S.P. Denbaars, S. Nakamura, U.K. Mishra, Milliwatt power blue InGaN/GaN light-emitting diodes on semipolar GaN templates. Jpn. J. Appl. Phys. 44, L945–L947 (2005)

    Article  ADS  Google Scholar 

  91. T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, N. Sawaki, Fabrication and properties of semi-polar \((1\overline{1}01)\) and \((11\overline{2}2)\) InGaN/GaN light emitting diodes on patterned Si substrates. Phys. Status Solidi (c) 5(6), 2234–2237 (2008)

    Article  ADS  Google Scholar 

  92. M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai, Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar \(11\overline{2}2\) GaN bulk substrates. Jpn. J. Appl. Phys. 45(26), L659–L662 (2006)

    Article  ADS  Google Scholar 

  93. H. Sato, A. Tyagi, H. Zhong, N. Fellows, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, High power and high efficiency green light emitting diode on free-standing semipolar (\(11\overline{2}2\)) bulk GaN substrate. Phys. Status Solidi (RRL)—Rapid Res. Lett. 1(4), 162–164 (2007)

    Google Scholar 

  94. H. Sato, R.B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Optical properties of yellow light-emitting diodes grown on semipolar \((11\overline{2}2)\) bulk GaN substrates. Appl. Phys. Lett. 92(22), 221110 (2008)

    Article  ADS  Google Scholar 

  95. Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S.P. DenBaars, S. Nakamura, 30-mw-class high-power and high-efficiency blue semipolar (\(10\overline{11}\)) InGaN/GaN light-emitting diodes obtained by backside roughening technique. Appl. Phys. Express 3(10), 102101 (2010)

    Article  ADS  Google Scholar 

  96. H. Zhong, A. Tyagi, N.N. Fellows, F. Wu, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, High power and high efficiency blue light emitting diode on freestanding semipolar (\(10\overline{11}\)) bulk GaN substrate. Appl. Phys. Lett. 90(23), 233504 (2007)

    Article  ADS  Google Scholar 

  97. S. Yamamoto, Y. Zhao, C.-C. Pan, R.B. Chung, K. Fujito, J. Sonoda, S.P. DenBaars, S. Nakamura, High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (\(20\overline{2}1\)) GaN substrates. Appl. Phys. Express 3(12), 122102 (2010)

    Article  ADS  Google Scholar 

  98. K. Okamoto, H. Ohta, D. Nakagawa, M. Sonobe, J. Ichihara, H. Takasu, Dislocation-free m-plane InGaN/GaN light-emitting diodes on m-plane gan single crystals. Jpn. J. Appl. Phys. 45(45), L1197–L1199 (2006)

    Article  ADS  Google Scholar 

  99. A. Chakraborty, B.A. Haskell, S. Keller, J.S. Speck, S.P. Denbaars, S. Nakamura, U.K. Mishra, Demonstration of nonpolar \(m\)-plane InGaN/GaN light-emitting diodes on free-standing \(m\)-plane GaN substrates. Jpn. J. Appl. Phys. 44(5), L173–L175 (2005)

    Article  ADS  Google Scholar 

  100. A. Chakraborty, B.A. Haskell, H. Masui, S. Keller, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Nonpolar \(m\)-plane blue-light-emitting diode lamps with output power of \(23.5\,{\rm{mW}}\) under pulsed operation. Jpn. J. Appl. Phys. 45(2A), 739–741 (2006)

    Article  ADS  Google Scholar 

  101. K.-C. Kim, M.C. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, S.P. DenBaars, Improved electroluminescence on nonpolar m-plane InGaN/GaN quantum wells LEDs. Phys. Status Solidi (RRL)—Rapid Res. Lett. 1(3), 125–127 (2007)

    Google Scholar 

  102. Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, M. Ueno, K. Katayama, T. Nakamura, Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar \(\{20\overline{2}1\}\) GaN substrates. Appl. Phys. Express 2(9), 092101 (2009)

    Article  ADS  Google Scholar 

  103. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, T. Nakamura, 531 nm green lasing of InGaN based laser diodes on semi-polar \(\{20\overline{2}1\}\) free-standing GaN substrates. Appl. Phys. Express 2, 082101 (2009)

    Article  ADS  Google Scholar 

  104. T. Yamashita, T. Akiyama, K. Nakamura, T. Ito, Surface reconstructions on GaN and InN semipolar \((20\overline{2}1)\) surfaces. Jpn. J. Appl. Phys. 49, 018001 (2010)

    Article  ADS  Google Scholar 

  105. Y.S. Kim, A. Kaneta, M. Funato, Y. Kawakami, T. Kyono, M. Ueno, T. Nakamura, Optical gain spectroscopy of a semipolar \((20\overline{2}1)\)-oriented green InGaN laser diode. Appl. Phys. Express 4, 052103 (2011)

    Article  ADS  Google Scholar 

  106. Y. Zhao, S. Tanaka, C.-C. Pan, K. Fujito, D. Feezell, J.S. Speck, S.P. DenBaars, S. Nakamura, High-power blue-violet semipolar \((20\overline{21})\) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm\(^2\). Appl. Phys. Express 4, 082104 (2011)

    Article  ADS  Google Scholar 

  107. Y. Kawaguchi, C.-Y. Huang, Y.-R. Wu, Q. Yan, C.-C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C.G. Van de Walle, S.P. DenBaars, S. Nakamura, Influence of polarity on carrier transport in semipolar \((20\overline{2}1)\) and \((20\overline{21})\) multiple-quantum-well light-emitting diodes. Appl. Phys. Lett. 100(23), 231110 (2012)

    Article  ADS  Google Scholar 

  108. Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. Shan, Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C G. Van de Walle, J.S. Speck, S.P. DenBaars, S. Nakamura, D. Feezell, Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells. Appl. Phys. Lett. 100(20), 201108 (2012)

    Article  ADS  Google Scholar 

  109. P.S. Hsu, K.M. Kelchner, A. Tyagi, R.M. Farrell, D.A. Haeger, K. Fujito, H. Ohta, S.P. DenBaars, J.S. Speck, S. Nakamura, InGaN/GaN blue laser diode grown on semipolar \((30\overline{3}1)\) free-standing GaN substrates. Appl. Phys. Express 3(5), 052702 (2010)

    Article  ADS  Google Scholar 

  110. D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S. Ichi, Nagahama, T. Mukai, Watt-class high-output-power 365 nm ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 43(9A), 5945–5950 (2004)

    Article  ADS  Google Scholar 

  111. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, White light emitting diodes with super-high luminous efficacy. J. Phys. D: Appl. Phys. 43(35), 354002 (2010)

    Article  Google Scholar 

  112. T. Mukai, M. Yamada, S. Nakamura, Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys. 38(Part 1, No. 7A), 3976–3981 (1999)

    Google Scholar 

  113. Y. Narakawa, Nichia Corporation, Recent developments of high efficiency white light emitting diodes. Presentation at the ICNS-7, Las Vegas, USA (2007)

    Google Scholar 

  114. Nichia Corporation Oral presentation at the ICNS-8, Jeju, Korea (2009)

    Google Scholar 

  115. W. Goetz, Philips-Lumileds Lighting, High power III-nitride based light emitting diodes: progress and challenges. Presentation at the ICNS-7, Las Vegas, USA (2007)

    Google Scholar 

  116. W. Goetz, Philips-Lumileds Lighting Presentation at the rump session on the “Future of Solid State Lighting” at the ICNS-8, Jeju, Korea (2009)

    Google Scholar 

  117. Nichia Corporartion, 2012 Nichia LED Catalogue. Website (2012), http://www.nichia.co.jp

  118. Soraa, Soraa premium MR 16 LED lamp, product# MR16-50-B01-12-830-25. Website (2012), http://www.soraa.com

Download references

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (SFB 787) “Semiconductor Nanophotonics” and the Research Group (FOR 957) “PolarCon.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kneissl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kneissl, M., Raß, J., Schade, L., Schwarz, U.T. (2017). Growth and Optical Properties of GaN-Based Non- and Semipolar LEDs. In: Seong, TY., Han, J., Amano, H., Morkoç, H. (eds) III-Nitride Based Light Emitting Diodes and Applications. Topics in Applied Physics, vol 133. Springer, Singapore. https://doi.org/10.1007/978-981-10-3755-9_5

Download citation

Publish with us

Policies and ethics