Skip to main content

Interacting Topological Crystalline Insulators

  • Chapter
  • First Online:
Theoretical Study on Correlation Effects in Topological Matter

Part of the book series: Springer Theses ((Springer Theses))

  • 841 Accesses

Abstract

We study the effect of electron interactions in topological crystalline insulators (TCIs) protected by mirror symmetry, which are realized in the SnTe material class and theorized in antiperovskite materials \(A_3BX\) with \(A=\) (Sr, La, Ca), \(B=\) (Sn, Pb) and \(X=\) (O, N, C). They host multivalley Dirac fermion surface states. Without interactions, such TCIs are classified by the mirror Chern number both for two and three dimensions. We find that electron interactions reduce the integer classification of noninteracting TCIs to a finite group \(\mathbb {Z}_4\) in two dimensions and \(\mathbb {Z}_8\) in three dimensions. The classification of the two-dimensional case is obtained by analyzing the one-dimensional edge modes using the bosonization method. For the classification of the three-dimensional case, the argument exploits the nonlocal nature of mirror symmetry and an explicit construction of surface states shows a reduction of the classification. Our construction builds on interacting edge states of \(U(1)\times Z_2\) symmetry-protected topological phases of fermions in two dimensions, which we classify. It reveals a deep connection between 3D topological phases protected by spatial symmetries and 2D topological phases protected by internal symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For any 2D system including multilayers, one can choose single-particle basis states that are either even or odd under the reflection \(z\rightarrow -z\). In this basis, the mirror symmetry takes the explicit form of a \(\mathbb {Z}_2\) internal symmetry.

  2. 2.

    We consider the operator of the form \(e^{i\Phi _{\varvec{L}}(x)}\), which describes a local excitation in the sense that it can be written by the electron creation and annihilation operators. The commutation relation for \(e^{i\Phi _{\varvec{L}}(x)}\) is given by

    $$\begin{aligned} e^{i\Phi _{\varvec{L}_a}(x)} e^{i\Phi _{\varvec{L}_b}(x')}&= e^{i\Phi _{\varvec{L}_b}(x')} e^{i\Phi _{\varvec{L}_a}(x)} e^{-[\Phi _{\varvec{L}_a}(x), \Phi _{\varvec{L}_b}(x')]} \nonumber \\&= e^{i\Phi _{\varvec{L}_b}(x')} e^{i\Phi _{\varvec{L}_a}(x)} e^{\pi i \varvec{L}_a^T K \varvec{L}_b \text {sgn} (x-x')}. \end{aligned}$$

    Under the commutativity condition (5.14), the operators \(e^{i\Phi _{\varvec{L}_a}(x)}\) commute each other, and hence a pair of nonchiral edge modes is decoupled from others. Therefore, if we have n linearly-independent integer-valued vectors \(\{ \varvec{L}_a \}\), the edge modes are decoupled into n pairs of nonchiral modes, and a gap-opening scattering process can be assigned to each decoupled pair.

  3. 3.

    This redefinition is possible when the two flavors can be regarded as equivalent, i.e., the velocity of different edge modes are chosen to be the same. We note that relaxing the condition does not affect any of the results.

  4. 4.

    x is actually defined on a lattice \(x=aj\), where a is a lattice constant and j is an integer, and finally we take the continuum limit. Here we take the lattice constant \(a=1\) for simplicity.

  5. 5.

    An argument of similar spirit has been made in Ref. [5] to prove that in the presence of time-reversal symmetry, TCI surface states cannot be localized under disorder.

References

  1. T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Nat. Commun. 3, 982 (2012)

    Article  ADS  Google Scholar 

  2. Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, Y. Ando, Nat. Phys. 8, 800 (2012)

    Article  Google Scholar 

  3. P. Dziawa, B.J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Łusakowska, T. Balasubramanian, B.M. Wojek, M.H. Berntsen, O. Tjernberg, T. Story, Nat. Mater. 11, 1023 (2012)

    ADS  Google Scholar 

  4. S.-Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J. Denlinger, Y.J. Wang, H. Lin, L.A. Wray, G. Landolt, B. Slomski, J.H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F.C. Chou, R.J. Cava, A. Bansil, M.Z. Hasan, Nat. Commun. 3, 1192 (2012)

    Article  ADS  Google Scholar 

  5. Y. Ando, L. Fu, Annu. Rev. Condens. Matter Phys. 6, 361 (2015)

    Article  ADS  Google Scholar 

  6. Y. Okada, M. Serbyn, H. Lin, D. Walkup, W. Zhou, C. Dhital, M. Neupane, S. Xu, Y.J. Wang, R. Sankar, F. Chou, A. Bansil, M.Z. Hasan, S.D. Wilson, L. Fu, V. Madhavan, Science 341, 1496 (2013)

    Article  ADS  Google Scholar 

  7. I. Zeljkovic, Y. Okada, M. Serbyn, R. Sankar, D. Walkup, W. Zhou, J. Liu, G. Chang, Y.J. Wang, M.Z. Hasan, F. Chou, H. Lin, A. Bansil, L. Fu, V. Madhavan, Nat. Mater. 14, 318 (2015)

    Article  ADS  Google Scholar 

  8. B.M. Wojek, M.H. Berntsen, V. Jonsson, A. Szczerbakow, P. Dziawa, B.J. Kowalski, T. Story, O. Tjernberg, Nat. Commun. 6, 8463 (2015)

    Article  ADS  Google Scholar 

  9. M. Serbyn, L. Fu, Phys. Rev. B 90, 035402 (2014)

    Article  ADS  Google Scholar 

  10. J.C.Y. Teo, L. Fu, C.L. Kane, Phys. Rev. B 78, 045426 (2008)

    Article  ADS  Google Scholar 

  11. L. Fidkowski, A. Kitaev, Phys. Rev. B 81, 134509 (2010)

    Article  ADS  Google Scholar 

  12. L. Fidkowski, A. Kitaev, Phys. Rev. B 83, 075103 (2011)

    Article  ADS  Google Scholar 

  13. S. Ryu, S.-C. Zhang, Phys. Rev. B 85, 245132 (2012)

    Article  ADS  Google Scholar 

  14. H. Yao, S. Ryu, Phys. Rev. B 88, 064507 (2013)

    Article  ADS  Google Scholar 

  15. X.-L. Qi, New J. Phys. 15, 065002 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. L. Fidkowski, X. Chen, A. Vishwanath, Phys. Rev. X 3, 041016 (2013)

    Google Scholar 

  17. C. Wang, T. Senthil, Phys. Rev. B 89, 195124 (2014)

    Article  ADS  Google Scholar 

  18. Z.-C. Gu, M. Levin, Phys. Rev. B 89, 201113 (2014)

    Article  ADS  Google Scholar 

  19. T. Neupert, C. Chamon, C. Mudry, R. Thomale, Phys. Rev. B 90, 205101 (2014)

    Article  ADS  Google Scholar 

  20. A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  21. A. Kitaev, A.I.P. Conf, Proc. 1134, 22 (2009)

    Google Scholar 

  22. S. Ryu, A.P. Schnyder, A. Furusaki, A.W. Ludwig, New J. Phys. 12, 065010 (2010)

    Article  ADS  Google Scholar 

  23. M. Kargarian, G.A. Fiete, Phys. Rev. Lett. 110, 156403 (2013)

    Article  ADS  Google Scholar 

  24. T.H. Hsieh, J. Liu, L. Fu, Phys. Rev. B 90, 081112 (2014)

    Article  ADS  Google Scholar 

  25. H. Weng, J. Zhao, Z. Wang, Z. Fang, X. Dai, Phys. Rev. Lett. 112, 016403 (2014)

    Article  ADS  Google Scholar 

  26. M. Ye, J.W. Allen, K. Sun, arXiv:1307.7191

  27. Y.-M. Lu, A. Vishwanath, Phys. Rev. B 86, 125119 (2012)

    Article  ADS  Google Scholar 

  28. X.G. Wen, Int. J. Mod. Phys. B 6, 1711 (1992)

    Article  ADS  Google Scholar 

  29. X.G. Wen, A. Zee, Phys. Rev. B 46, 2290 (1992)

    Article  ADS  Google Scholar 

  30. M. Levin, A. Stern, Phys. Rev. Lett. 103, 196803 (2009)

    Article  ADS  Google Scholar 

  31. M. Levin, A. Stern, Phys. Rev. B 86, 115131 (2012)

    Article  ADS  Google Scholar 

  32. F.D.M. Haldane, Phys. Rev. Lett. 74, 2090 (1995)

    Article  ADS  Google Scholar 

  33. J. Liu, T.H. Hsieh, P. Wei, W. Duan, J. Moodera, L. Fu, Nat. Mater. 13, 178 (2014)

    Article  ADS  Google Scholar 

  34. E.O. Wrasse, T.M. Schmidt, Nano Lett. 14, 5717 (2014)

    Article  ADS  Google Scholar 

  35. J. Liu, X. Qian, L. Fu, Nano Lett. 15, 2657 (2015)

    Article  ADS  Google Scholar 

  36. C. Niu, P.M. Buhl, G. Bihlmayer, D. Wortmann, S. Blügel, Y. Mokrousov, Phys. Rev. B 91, 201401 (2015)

    Article  ADS  Google Scholar 

  37. D. Schuricht, F.H.L. Essler, A. Jaefari, E. Fradkin, Phys. Rev. B 83, 035111 (2011)

    Article  ADS  Google Scholar 

  38. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  39. A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  40. S.P. Strong, A.J. Millis, Phys. Rev. Lett. 69, 2419 (1992)

    Article  ADS  Google Scholar 

  41. S.P. Strong, A.J. Millis, Phys. Rev. B 50, 9911 (1994)

    Article  ADS  Google Scholar 

  42. D. Scalapino, S.-C. Zhang, W. Hanke, Phys. Rev. B 58, 443 (1998)

    Article  ADS  Google Scholar 

  43. M. Tsuchiizu, A. Furusaki, Phys. Rev. B 66, 245106 (2002)

    Article  ADS  Google Scholar 

  44. H. Isobe, L. Fu, Phys. Rev. B 92, 081304 (2015)

    Article  ADS  Google Scholar 

  45. A.V. Moroz, K.V. Samokhin, C.H.W. Barnes, Phys. Rev. B 62, 16900 (2000)

    Article  ADS  Google Scholar 

  46. C.-K. Chiu, H. Yao, S. Ryu, Phys. Rev. B 88, 075142 (2013)

    Article  ADS  Google Scholar 

  47. T. Morimoto, A. Furusaki, Phys. Rev. B 88, 125129 (2013)

    Article  ADS  Google Scholar 

  48. K. Shiozaki, M. Sato, Phys. Rev. B 90, 165114 (2014)

    Article  ADS  Google Scholar 

  49. C. Wang, A.C. Potter, T. Senthil, Science 343, 629 (2014)

    Article  ADS  Google Scholar 

  50. M.F. Lapa, J.C.Y. Teo, T.L. Hughes, Phys. Rev. B 93, 115131 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Isobe .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Isobe, H. (2017). Interacting Topological Crystalline Insulators. In: Theoretical Study on Correlation Effects in Topological Matter. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3743-6_5

Download citation

Publish with us

Policies and ethics