Skip to main content

Generalized Hund’s Rule for Two-Atom Systems

  • Chapter
  • First Online:
  • 796 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Hund’s rule is one of the fundamentals of the correlation physics at the atomic level, determining the ground state multiplet of the electrons. In real systems, the electrons hop between the atoms and gain the itinerancy, which is usually described by the band theory. The whole content of theories on correlation is to provide a reliable way to describe the intermediate situation between the two limits. Here we propose an approach toward this goal, i.e., we study the two-atom systems of three \(t_{2g}\) orbitals and see how the Hund’s rule is modified by the transfer integral t between them. It is found that the competition between t and the Hund’s coupling J at each atom determines the crossover from the molecular orbital limit to the strong correlation limit. Especially, our focus is on the generalization of the third rule about the spin-orbit interactions (SOIs), in the presence of the correlation. We have found that there are cases where the effective SOIs are appreciably enhanced by the Hund’s coupling at the filling of four or five electrons. This result provides a useful guideline to realize effectively strong SOI with common and lighter elements, which helps to realize nontrivial electronic states without heavy and rare elements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This average can be considered as the entanglement of formation \(E(\mathcal {E})\) of an ensemble of pure states \(\mathcal {E} = \{ \psi _\text {AB}^{(k)}, p_k \}\), where \(|{\psi _\text {AB}^{(k)}}\rangle \) is a pure state with probability \(p_k\) (\(k=1, \ldots ,d\), with d being the number of pure states in the ensemble) [30]. The entanglement of formation of the ensemble \(\mathcal {E}\) is defined as the ensemble average of the entanglement entropy of the pure states in \(\mathcal {E}\): \(E(\mathcal {E}) = \sum _{k=1}^d p_k S(\rho _{\text {A},k}) = \sum _{k=1}^d p_k S(\rho _{\text {B},k})\), where \(\rho _{\text {A},k}\) and \(\rho _{\text {B},k}\) are the reduced density matrices for the pure state \(|{\psi _\text {AB}^{(k)}}\rangle \). In our calculation, we consider the average of the entanglement entropy for each degenerate state with equal weight, i.e., the entanglement of formation \(E(\mathcal {E})\) with \(p_1= p_2 = \cdots = p_d\). We note that, when \(d=1\), the entanglement of formation \(E(\mathcal {E})\) is equal to the entanglement entropy S.

References

  1. F. Hund, Z. Phys. 40, 742 (1927)

    Article  ADS  MathSciNet  Google Scholar 

  2. F. Hund, Z. Phys. 42, 93 (1927)

    Article  ADS  Google Scholar 

  3. W. Heitler, F. London, Z. Phys. 44, 455 (1927)

    Article  ADS  Google Scholar 

  4. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010)

    Article  ADS  Google Scholar 

  5. S. Murakami, N. Nagaosa, in Comprehensive Semiconductor Science and Technology, ed. by P. Bhattacharya, R. Fornari, H. Kamimura (Elsevier, Amsterdam, 2011), p. 222

    Chapter  Google Scholar 

  6. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  7. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  8. B.J. Kim, H. Jin, S.J. Moon, J.-Y. Kim, B.-G. Park, C.S. Leem, J. Yu, T.W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao, E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008)

    Article  ADS  Google Scholar 

  9. A. Shitade, H. Katsura, J. Kuneš, X.-L. Qi, S.-C. Zhang, N. Nagaosa, Phys. Rev. Lett. 102, 256403 (2009)

    Article  ADS  Google Scholar 

  10. G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

    Article  ADS  Google Scholar 

  11. E. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  12. K. Yoshida, Theory of Magnetism (Springer, New York, 1996)

    Book  Google Scholar 

  13. S. Raghu, X.-L. Qi, C. Honerkamp, S.-C. Zhang, Phys. Rev. Lett. 100, 156401 (2008)

    Article  ADS  Google Scholar 

  14. Y. Zhang, Y. Ran, A. Vishwanath, Phys. Rev. B 79, 245331 (2009)

    Article  ADS  Google Scholar 

  15. J. Wen, A. Rüegg, C.-C.J. Wang, G.A. Fiete, Phys. Rev. B 82, 075125 (2010)

    Article  ADS  Google Scholar 

  16. M. Kurita, Y. Yamaji, M. Imada, J. Phys. Soc. Jpn. 80, 044708 (2011)

    Article  ADS  Google Scholar 

  17. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  18. J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)

    Article  ADS  Google Scholar 

  19. S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic Press, New York, 1970)

    Google Scholar 

  20. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)

    Article  ADS  Google Scholar 

  21. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  22. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  23. L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  24. H. Isobe, N. Nagaosa, Phys. Rev. B 90, 115122 (2014)

    Article  ADS  Google Scholar 

  25. A. Georges, L.D. Medici, J. Mravlje, Annu. Rev. Condens. Matter Phys. 4, 137 (2013)

    Article  ADS  Google Scholar 

  26. J.B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958)

    Article  ADS  Google Scholar 

  27. J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959)

    Article  ADS  Google Scholar 

  28. L. de’ Medici, J. Mravlje, A. Georges, Phys. Rev. Lett. 107, 256401 (2011)

    Google Scholar 

  29. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  Google Scholar 

  30. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  31. Y. Tokura, Physica C 235–240, 138 (1994)

    Article  Google Scholar 

  32. T. Arima, Y. Tokura, J.B. Torrance, Phys. Rev. B 48, 17006 (1993)

    Article  ADS  Google Scholar 

  33. S. Miyasaka, Y. Okimoto, Y. Tokura, J. Phys. Soc. Jpn. 71, 2086 (2002)

    Article  ADS  Google Scholar 

  34. T. Nakamura, G. Petzow, L. Gauckler, Mater. Res. Bull. 14, 649 (1979)

    Article  Google Scholar 

  35. A.M. Arévalo-López, E. Castillo-Martínez, M.A. Alario-Franco, J. Phys. Condens. Matter 20, 505207 (2008)

    Article  Google Scholar 

  36. B. Chamberland, Solid State Commun. 5, 663 (1967)

    Article  ADS  Google Scholar 

  37. D. Peck, M. Miller, K. Hilpert, Solid State Ion. 123, 59 (1999)

    Article  Google Scholar 

  38. J. Longo, P. Raccah, J. Solid State Chem. 6, 526 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Isobe .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Isobe, H. (2017). Generalized Hund’s Rule for Two-Atom Systems. In: Theoretical Study on Correlation Effects in Topological Matter. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3743-6_4

Download citation

Publish with us

Policies and ethics