Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Low symmetries of a crystal structure could allow the energy dispersion to exhibit Weyl fermions with several different velocities. The quasi-two-dimensional organic semiconductor \(\alpha \)-(BEDT-TTF)\(_2\)I\(_3\) has an anisotropic linear dispersion with a zero energy gap near its Fermi level. Since the density of states vanishes at the Fermi level, the Coulomb interaction is unscreened and long-ranged. We study the effect of the long-range Coulomb interaction and the low-energy behavior of the two-dimensional Weyl/Dirac fermions with tilted energy dispersion. The renormalization group analysis within nonrelativistic scheme reveals that the nearly logarithmic enhancement of the velocity parameters reshapes the tilted Dirac cones and changes the low-energy behavior. The suppression of the spin susceptibility at low temperatures is calculated theoretically, which well explains an NMR experiment. By taking into account of the relativistic effect, we observe the recovery of the isotropic Dirac cone and the Lorentz invariance in the low-energy limit, accompanying the Cherenkov radiation. This result applies even when the Dirac cone is strongly tilted and the velocity is negative in one direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The regularization by the cutoff \(\Lambda \) violates the gauge invariance in the intermediate stage; the self-energy explicitly depends on the cutoff. But the resultant RG equations do not include the cutoff \(\Lambda \) and seem to be in gauge-invariant form. Actually the same RG equations can also be derived by dimensional regularization, which preserves the gauge invariance.

  2. 2.

    Actually, Eq. (3.19) gives the spin susceptibility in the noninteracting case. When we treat an interaction U by RPA approximation, the spin susceptibility \(\chi \) without the lattice site dependence becomes

    $$\begin{aligned} \chi = \frac{\chi _0}{1-U\chi _0}, \end{aligned}$$

    where \(\chi _0\) is the spin susceptibility for the corresponding noninteracting system. We use the representation for the noninteracting system in the following analysis, by assuming \(\chi _0\) is small. This approximation \(\chi = \chi _0\) becomes accurate in the low-temperature region, where the effect of the RG analysis is stronger, because \(\chi _0\) is suppressed in low temperature as we will see later.

References

  1. A. Kobayashi, S. Katayama, Y. Suzumura, H. Fukuyama, J. Phys. Soc. Jpn. 76, 034711 (2007)

    Article  ADS  Google Scholar 

  2. A. Kobayashi, Y. Suzumura, H. Fukuyama, J. Phys. Soc. Jpn. 77, 064718 (2008)

    Article  ADS  Google Scholar 

  3. M.O. Goerbig, J.-N. Fuchs, G. Montambaux, F. Piéchon, Phys. Rev. B 78, 045415 (2008)

    Article  ADS  Google Scholar 

  4. S. Katayama, A. Kobayashi, Y. Suzumura, Eur. Phys. J. B 67, 139 (2009)

    Article  ADS  Google Scholar 

  5. A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig, Nature 527, 495 (2015)

    Article  ADS  Google Scholar 

  6. H. Isobe, N. Nagaosa, Phys. Rev. Lett. 116, 116803 (2016)

    Article  ADS  Google Scholar 

  7. K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H. Endres, H.J. Keller, Mol. Cryst. Liq. Cryst. 108, 359 (1984)

    Article  Google Scholar 

  8. H. Kino, T. Miyazaki, J. Phys. Soc. Jpn. 75, 034704 (2006)

    Article  ADS  Google Scholar 

  9. S. Katayama, A. Kobayashi, Y. Suzumura, J. Phys. Soc. Jpn. 75, 054705 (2006)

    Article  ADS  Google Scholar 

  10. N. Tajima, K. Kajita, Sci. Tech. Adv. Mater. 10, 024308 (2009)

    Article  Google Scholar 

  11. A. Kobayashi, S. Katayama, Y. Suzumura, Sci. Tech. Adv. Mater. 10, 024309 (2009)

    Article  Google Scholar 

  12. H. Isobe, N. Nagaosa, J. Phys. Soc. Jpn. 81, 113704 (2012)

    Article  ADS  Google Scholar 

  13. M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, R.J. Cava, Nature 514, 205 (2014)

    ADS  Google Scholar 

  14. M. Hirata, NMR Sturies of Massless Dirac Fermions in the Quasi-Two-Dimensional Organic Conductor \(\alpha \)-(BEDT-TTF)\(_{2}\)I\(_{3}\), Ph.D. thesis, University of Tokyo (2012)

    Google Scholar 

  15. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. B 59, R2474 (1999)

    Google Scholar 

  16. D.T. Son, Phys. Rev. B 75, 235423 (2007)

    Article  ADS  Google Scholar 

  17. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012)

    Google Scholar 

  18. S. Teber, Phys. Rev. D 86, 025005 (2012)

    Article  ADS  Google Scholar 

  19. E.V. Gorbar, V.P. Gusynin, V.A. Miransky, Phys. Rev. D 64, 105028 (2001)

    Article  ADS  Google Scholar 

  20. J. González, F. Guinea, M. Vozmediano, Nucl. Phys. B 424, 595 (1994)

    Article  ADS  Google Scholar 

  21. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd edn. (Butterworth-Heinemann, Oxford, 1984)

    Google Scholar 

  22. L. Van Hove, Phys. Rev. 89, 1189 (1953)

    Article  ADS  Google Scholar 

  23. M. Hirata, K. Ishikawa, K. Miyagawa, M. Tamura, C. Berthier, D. Basko, A. Kobayashi, G. Matsuno, K. Kanoda, Nat. Commun. 7, 12666 (2016)

    Article  ADS  Google Scholar 

  24. S. Chadha, H. Nielsen, Nucl. Phys. B 217, 125 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Isobe .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Isobe, H. (2017). Tilted Dirac Cones in Two Dimensions. In: Theoretical Study on Correlation Effects in Topological Matter. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3743-6_3

Download citation

Publish with us

Policies and ethics