Skip to main content

Optical Ring Cavity

  • Chapter
  • First Online:
  • 418 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we will show the experimental principle of testing Lorentz invariance with an optical ring cavity. In Sect. 3.1, the experimental principle is explained, and a double-pass configuration which we will employ is introduced. Section 3.2 shows the sensitivity goal to improve the current upper limits, and various noise sources and their requirements are described in Sect. 3.3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.S.N. Trimmer, R.F. Baierlein, Anisotropic modification of Maxwell’s equations. Phys. Rev. D 8, 3326 (1973)

    Article  ADS  Google Scholar 

  2. F. Zarinetchi, S. Ezekiel, Observation of lock-in behavior in a passive resonator gyroscope. Opt. Lett. 11, 6 (1986)

    Article  Google Scholar 

  3. B.J. Cusack, D.A. Shaddock, B.J.J. Slagmolen, G. de Vine, M.B. Gray, D.E. McClelland, Double pass locking and spatial mode locking for gravitational wave detectors. Class. Quantum Grav. 19, 1819 (2002)

    Article  ADS  Google Scholar 

  4. N. Ohmae, Laser system for second-generation gravitational-wave detectors. Doctoral thesis (University of Tokyo, 2011), pp. 58–69

    Google Scholar 

  5. F.N. Baynes, A.N. Luiten, M.E. Tobar, Testing Lorentz invariance using an odd-parity asymmetric optical resonator. Phys. Rev. D 84, 081101(R) (2011)

    Article  ADS  Google Scholar 

  6. F.N. Baynes, M.E. Tobar, A.N. Luiten, Oscillating test of the isotropic shift of the speed of light. Phys. Rev. Lett. 108, 260801 (2012)

    Article  ADS  Google Scholar 

  7. J.-P. Bocquet et al., Limits on light-speed anisotropies from compton scattering of high-energy electrons. Phys. Rev. Lett. 104, 241601 (2010)

    Article  ADS  Google Scholar 

  8. N. Mio, Jyuryokuha wo Toraeru (in Japanese) ed. By T. Nakamura, N. Mio, M. Ohashi (Kyoto University Press, 1998), p. 210

    Google Scholar 

  9. T.W. Hänsch, B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441 (1980)

    Article  ADS  Google Scholar 

  10. S. Moriwaki, T. Mori, K. Takeno, N. Mio, Frequency discrimination method making use of polarization selectivity of triangular optical cavity. Appl. Phys. Express 2, 016501 (2009)

    Article  ADS  Google Scholar 

  11. G. Sagnac, The demonstration of the luminiferous aether by an interferometer in uniform rotation. Acad. Sci. Paris 157, 708 (1913)

    Google Scholar 

  12. R. Wang, Y. Zheng, A. Yao, Generalized Sagnac effect. Phys. Rev. Lett. 93, 143901 (2004)

    Article  ADS  Google Scholar 

  13. E.J. Post, Sagnac effect. Rev. Mod. Phys. 39, 475 (1967)

    Article  ADS  Google Scholar 

  14. P.R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore, 1994), p. 127

    Book  Google Scholar 

  15. H.B. Callen, T.A. Welton, Irreversibility and generalized noise. Phys. Rev. 83, 34 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. K. Numata, A. Kemery, J. Camp, Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004)

    Article  ADS  Google Scholar 

  17. N. Nakagawa, A.M. Gretarsson, E.K. Gustafson, M.M. Fejer, Thermal noise in half-infinite mirrors with nonuniform loss: a slab of excess loss in a half-infinite mirror. Phys. Rev. D 65, 102001 (2002)

    Article  ADS  Google Scholar 

  18. G. Cagnoli, L. Gammaitoni, J. Kovalik, F. Marchesoni, M. Punturo, Low-frequency internal friction in clamped-free thin wires. Phys. Lett. A 255, 230 (1999)

    Article  ADS  Google Scholar 

  19. Matweb http://www.matweb.com/

  20. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, R. Nawrodt, Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 101, 041905 (2012)

    Article  ADS  Google Scholar 

  21. A. Sekiya, Kukan no Tohosei Kensho Jikken (in Japanese). Master thesis (University of Tokyo, 2000), p. 36. http://granite.phys.s.u-tokyo.ac.jp/theses/sekiya_m.pdf

  22. S. Herrmann, A. Senger, K. Möhle1, M. Nagel, E.V. Kovalchuk, A. Peters, Rotating optical cavity experiment testing Lorentz invariance at the \( 10 ^{-17 }\) level. Phys. Rev. D 80, 105011 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Michimura .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Michimura, Y. (2017). Optical Ring Cavity. In: Tests of Lorentz Invariance with an Optical Ring Cavity. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3740-5_3

Download citation

Publish with us

Policies and ethics