Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 357 Accesses

Abstract

Special Relativity is based upon two postulates, the special principle of relativity and the principle of the constancy of the speed of light. Starting from these two postulates, Einstein revealed that Lorentz transformation, not Galilean transformation, is the space-time coordinate transformation (Einstein, Ann Phys (Leipzig), 17:891, 1905, [1]). Special Relativity was the first theory to propose that Lorentz invariance is the universal symmetry of space-time and is valid not only for the Maxwell’s equations of electrodynamics, but also for other laws of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Einstein, Zur Elektrodynamik bewegter Körper. Ann. Phys. (Leipzig) 17, 891 (1905)

    Article  ADS  MATH  Google Scholar 

  2. D. Mattingly, Modern tests of Lorentz invariance. Living Rev. Relat. 8, 5 (2005)

    Article  ADS  MATH  Google Scholar 

  3. V.A. Kostelecký, N. Russell, Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11 (2011); updated version available at arXiv:0801.0287

  4. V.A. Kostelecký, Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry (World Scientific, Singapore, 2014)

    Book  Google Scholar 

  5. V.A. Kostelecký, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  6. V.A. Kostelecký, R. Potting, CPT and strings. Nucl. Phys. B 359, 545 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. R. Gambini, J. Pullin, Nonstandard optics from quantum space-time. Phys. Rev. D 59, 124021 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. C.H. Lineweaver, L. Tenorio, G.F. Smoot, P. Keegstra, A.J. Banday, P. Lubin, The dipole observed in the COBE DMR four-year data. Astrophys. J. 470, 38 (1996)

    Article  ADS  Google Scholar 

  9. D. Colladay, V.A. Kostelecký, Lorentz-violating extension of the standard model. Phys. Rev. D 58, 116002 (1998)

    Article  ADS  Google Scholar 

  10. V.A. Kostelecký, M. Mewes, Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005 (2002)

    Article  ADS  Google Scholar 

  11. V.A. Kostelecký, M. Mewes, Constraints on relativity violations from gamma-ray bursts. Phys. Rev. Lett. 110, 201601 (2013)

    Article  ADS  Google Scholar 

  12. V. Vasileiou, A. Jacholkowska, F. Piron, J. Bolmont, C. Couturier, J. Granot, F.W. Stecker, J. Cohen-Tanugi, F. Longo, Constraints on Lorentz invariance violation from fermi-large area telescope observations of gamma-ray bursts. Phys. Rev. D 87, 122001 (2013)

    Article  ADS  Google Scholar 

  13. A.A. Abdo et al., A limit on the variation of the speed of light arising from quantum gravity effects. Nature 462, 331 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Michimura .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Michimura, Y. (2017). Introduction. In: Tests of Lorentz Invariance with an Optical Ring Cavity. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3740-5_1

Download citation

Publish with us

Policies and ethics