Skip to main content

Transdifferentiation: A Lineage Instructive Approach Bypassing Roadways of Induced Pluripotent Stem Cell (iPSC)

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

Genetic programmes that assist decision-making of a stem cell whether to self-renew or to differentiate into a committed cell type have been studied extensively over the past few decades. In the process of exploiting pluripotent nature of a stem cell, researchers across the globe channelized their efforts to derive target cell types from various sources of stem cells. The scientific know-how about cellular fate determining transcription factors (TFs) and the huge amount of information regarding the regulation of stem cell differentiation led researchers to come up with a highly attractive concept of cellular reprogramming. About three decades ago, a fascinating study revealed direct conversion of fibroblasts to muscle cells by overexpressing merely one transcription factor ‘MyoD’. Towards deciphering the underpinnings of cellular differentiation and self-renewal programmes, an offshoot of thought has emerged that advocated the interconversion within the somatic cell state. In present days the task of direct conversion, more popularly known as transdifferentiation, has been an excellent alternative approach to generate the cells of interest for clinical purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ALS:

Amyloid lateral sclerosis

CHF:

Congestive heart failure

GIP:

Glucose-dependent insulinotropic polypeptide

iMPCs:

Induced multipotent progenitor cells

iPSCs:

Inducing pluripotent stem cells

NPCs:

Neuronal progenitor cells

TF:

Transcription factor

References

  1. Slack JM, Tosh D. Transdifferentiation and metaplasia—switching cell types. Curr Opin Genet Dev. 2001;11(5):581–6.

    Article  CAS  PubMed  Google Scholar 

  2. Wapinski OL, Vierbuchen T, Qu K, et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell. 2013;155(3):621–35.

    Article  CAS  PubMed  Google Scholar 

  3. Peter J. Out of Africa and into epigenetics: discovering reprogramming drugs. Nat Cell Biol. 2011;13:2.

    Article  Google Scholar 

  4. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51(6):987–1000.

    Article  CAS  PubMed  Google Scholar 

  5. Sisakhtnezhad S, Matin MM. Transdifferentiation: a cell and molecular reprogramming process. Cell Tissue Res. 2012;348(3):379–96. doi:10.1007/s00441-012-1403-y.

    Article  PubMed  Google Scholar 

  6. Kragl M, Knapp D, Nacu E, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460(7251):60–5.

    Article  CAS  PubMed  Google Scholar 

  7. Jayawardena TM, Egemnazarov B, Finch EA, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110(11):1465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lei Z, Yongda L, Jun M, et al. Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro. Cell Biol Int. 2007;31(9):916–23.

    Article  PubMed  Google Scholar 

  9. Ullah M, Stich S, Notter M, et al. Transdifferentiation of mesenchymal stem cells-derived adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and have a correlation with cell cycle arresting and driving genes. Differentiation. 2013;85(3):78–90.

    Article  CAS  PubMed  Google Scholar 

  10. Gerace D, Martiniello-Wilks R, O’Brien BA, et al. The use of β-cell transcription factors in engineering artificial β cells from non-pancreatic tissue. Gene Ther. 2015;22(1):1–8.

    Google Scholar 

  11. Tang DQ, et al. Genetically reprogrammed, liver-derived insulin-producing cells are glucose-responsive, but susceptible to autoimmune destruction in settings of murine model of type 1 diabetes. Am J Transl Res. 2013;5:184–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Berneman-Zeitouni D, Molakandov K, Elgart M, et al. The temporal and hierarchical control of transcription factors-induced liver to pancreas transdifferentiation. PLoS One. 2014;9(2):e87812.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li Y, Zhao LJ, Xia FZ, et al. Transdifferentiation of hepatic oval cells into pancreatic islet beta-cells. Front Biosci (Landmark Ed). 2012;17:2391–5.

    Article  Google Scholar 

  14. Wei R, Hong T. Lineage reprogramming: a promising road for pancreatic β cell regeneration. Trends Endocrinol Metab. 2016;27(3):163–76.

    Article  CAS  PubMed  Google Scholar 

  15. Nagaya M, Katsuta H, Kaneto H, et al. Adult mouse intrahepatic biliary epithelial cells induced in vitro to become insulin-producing cells. J Endocrinol. 2009;201:37–47.

    Article  CAS  PubMed  Google Scholar 

  16. Hickey RD, Galivo F, Schug J, et al. Generation of islet-like cells from mouse gall bladder by direct ex vivo reprogramming. Stem Cell Res. 2013;11:503–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Talchai C, Xuan S, Kitamura T, et al. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet. 2012;44:406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen YJ, Finkbeiner SR, Weinblatt D, et al. De novo formation of insulin-producing “neo-beta cell islets” from intestinal crypts. Cell Rep. 2014;6:1046–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sancho R, Gruber R, Gu G, et al. Loss of Fbw7 reprograms adult pancreatic ductal cells into alpha, delta, and beta cells. Cell Stem Cell. 2014;15:139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chera S, Baronnier D, Ghila L, et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature. 2014;514(7523):503–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu S, Rezvani M, Harbell J, et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014;508(7494):93–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 2011;475(7356):390–3.

    Article  CAS  PubMed  Google Scholar 

  23. Du Y, Wang J, Jia J, et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 2014;14(3):394–403.

    Article  CAS  PubMed  Google Scholar 

  24. Huang P, He Z, Ji S, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 2011;475(7356):386–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Gong Y, Guo Y, et al. Direct transdifferentiation of spermatogonial stem cells to morphological, phenotypic and functional hepatocyte-like cells via the ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E. Cell Commun Signal. 2013;11:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu WH, Song FQ, Ren LN, et al. The multiple functional roles of mesenchymal stem cells in participating in treating liver diseases. J Cell Mol Med. 2015;19(3):511–20.

    Article  CAS  PubMed  Google Scholar 

  27. Tsunemoto RK, Eade KT, Blanchard JW, et al. Forward engineering neuronal diversity using direct reprogramming. EMBO J. 2015;34(11):1445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vierbuchen T, Ostermeier A, Pang ZP, et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463(7284):1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zaret KS, Carroll JS. Pioneer transcription factors: Establishing competence for gene expression. Genes Dev. 2011;25(21):2227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar A, Declercq J, Eggermont K, et al. Zic3 induces conversion of human fibroblasts to stable neural progenitor-like cells. J Mol Cell Biol. 2012;4(4):252–5.

    Article  PubMed  Google Scholar 

  31. Lujan E, Chanda S, Ahlenius H, et al. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A. 2012;109(7):2527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han DW, Tapia N, Hermann A, et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012;10(4):465–72.

    Article  CAS  PubMed  Google Scholar 

  33. Thoma EC, Merkl C, Heckel T, et al. Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Rep. 2014;3(4):539–47.

    Article  CAS  Google Scholar 

  34. Victor MB, Richner M, Hermanstyne TA, et al. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron. 2014;84(2):311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson NK, Foster SD, Wang X, et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell. 2010;7:532–44.

    Article  CAS  PubMed  Google Scholar 

  36. Riddell J, Gazit R, Garrison BS, et al. Reprogramming committed murine blood cells to induce hematopoietic stem cells with defined factors. Cell. 2014;157(3):549–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szabo E, Rampalli S, Risuen o RM, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature. 2010;468:521–6.

    Article  CAS  PubMed  Google Scholar 

  38. Batta K, Kouskoff V, Lacaud G. Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells. Cell Rep. 2014;9(5):1871–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doppler SA, Deutsch MA, Lange R, et al. Direct reprogramming—the future of cardiac regeneration? Int J Mol Sci. 2015;16(8):17368–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou H, Dickson ME, Kim MS, et al. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proc Natl Acad Sci U S A. 2015;112(38):11864–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ying QL, Nichols J, Evans EP, et al. Changing potency by spontaneous fusion. Nature. 2002;416(6880):545–8.

    Article  CAS  PubMed  Google Scholar 

  42. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425(6961):968–73.

    Article  CAS  PubMed  Google Scholar 

  43. Tsai RY, McKay RD. Cell contact regulates fate choice by cortical stem cells. J Neurosci. 2000;20(10):3725–35.

    CAS  PubMed  Google Scholar 

  44. Sohal GS, Ali MM, Ali AA, et al. Ventrally emigrating neural tube cells contribute to the formation of Meckel’s and quadrate cartilage. Dev Dyn. 1999;216(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  45. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    Article  CAS  PubMed  Google Scholar 

  46. Yoo AS, Sun AX, Li L, et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 2011;476(7359):228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xue Y, Ouyang K, Huang J, et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated MicroRNA circuits. Cell. 2013;152(1–2):82–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Banerjee P, Dutta S, Pal R. Dysregulation of Wnt-signaling and a candidate set of miRNAs underlie the effect of metformin on neural crest cell development. Stem Cells. 2016;34(2):334–45.

    Article  CAS  PubMed  Google Scholar 

  49. Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341:651–4.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng L, Hu W, Qiu B, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2014;24:665–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu W, Qiu B, Guan W, et al. Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell. 2015;17:204–12.

    Google Scholar 

  52. Li X, Zuo X, Jing J, et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell. 2015;17:195–203.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang L, Yin JC, Yeh H, et al. Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell. 2015;17:735–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fu Y, Huang C, Xu X, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:1013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Manipal University, Manipal, India for supporting this study. Permission/conflict of interest: Author has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anujith Kumar Ph.D. or Rajarshi Pal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Louis, L.K., Ashwini, A., Kumar, A., Pal, R. (2017). Transdifferentiation: A Lineage Instructive Approach Bypassing Roadways of Induced Pluripotent Stem Cell (iPSC). In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_8

Download citation

Publish with us

Policies and ethics