Skip to main content

To D(e)rive or Reverse: The Challenge and Choice of Pluripotent Stem Cells for Regenerative Medicine

  • Chapter
  • First Online:
Book cover Regenerative Medicine: Laboratory to Clinic

Abstract

The immense potential of pluripotent human stem cells in transforming modern medicine is undeniable. Less than two decades since human embryonic stem cells (hESCs) were first derived, several clinical trials with hESC derivatives are underway. Though human-induced pluripotent stem cell (iPSC) lines are accepted by a wider community for use in research and therapy, issues of maintaining stem cell potency and achieving efficient differentiation are common to hESCs and iPSCs. While iPSCs are considered more accessible and acceptable, it is increasingly clear that iPSCs will be of limited use in autologous therapy. Hence haplobanks are being established for use in regenerative medicine. The additional cost of reprogramming to and characterizing iPSCs compared to deriving hESCs brings into question their suitability for regenerative applications in the Indian scenario, given the limited facilities and resources available. Here we discuss the importance of making an informed choice for the Indian context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ART:

Assisted reproductive technology

BAC:

Bacterial artificial chromosome

CAS9:

CRISPR-associated protein 9

cGMP:

Current good manufacturing practices

ChIP:

Chromatin immunoprecipitation

CRISPR:

Clustered regularly interspaced short palindromic repeats

EBNA:

Epstein-Barr virus nuclear antigen

ESC:

Embryonic stem cells

ES-like:

Embryonic stem cell-like

HLA:

Human leukocyte antigen

iPSC:

Induced pluripotent stem cell

iPSCs:

Induced pluripotent stem cells

IVF:

In vitro fertilization

miRNA or mir:

MicroRNA

mRNA:

Messenger RNA

OKSM:

Oct3/Oct4, Sox2, Klf4, and c-Myc

OriP:

Plasmid origin of replication

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  2. Alper J. Geron gets green light for human trial of ES cell-derived product. Nat Biotechnol. 2009;27:213–4.

    Article  CAS  PubMed  Google Scholar 

  3. Singh U, Quintanilla RH, Grecian S, et al. Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Rev. 2012;8(3):1021–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peura TT, Bosman A, Stojanov T. Derivation of human embryonic stem cell lines. Theriogenology. 2007;67(1):32–42.

    Article  PubMed  Google Scholar 

  5. Rasmussen MA, Hjermind LE, Hasholt LF, et al. Induced pluripotent stem cells (iPSCs) derived from a patient with frontotemporal dementia caused by a R406W mutation in microtubule-associated protein tau (MAPT). Stem Cell Res. 2016;16(1):75–8.

    Article  CAS  PubMed  Google Scholar 

  6. Oldershaw RA, Baxter MA, Lowe ET, et al. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol. 2010;28(11):1187–94.

    Article  CAS  PubMed  Google Scholar 

  7. Hibaoui Y, Grad I, Letourneau A, et al. Data in brief: transcriptome analysis of induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. Genome Data. 2014;2:226–9.

    Article  Google Scholar 

  8. Campos PB, Sartore RC, Abdalla SN, et al. Chromosomal spread preparation of human embryonic stem cells for karyotyping. J Vis Exp. 2009;31:1512.

    Google Scholar 

  9. Weinrich SL, Pruzan R, Ma L, et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet. 1997;17(4):498–502.

    Article  CAS  PubMed  Google Scholar 

  10. Outten JT, Gadue P, French DL, et al. High-throughput screening assay for embryoid body differentiation of human embryonic stem cells. Curr Protoc Stem Cell Biol. 2012;Chapter 1:Unit 1D 6.

    PubMed  Google Scholar 

  11. Hentze H, Soong PL, Wang ST, et al. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2(3):198–210.

    Article  PubMed  Google Scholar 

  12. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28(9):1568–70.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Shin S, Zeng X, et al. Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines. BMC Dev Biol. 2006;6:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elliott AM, Hohenstein Elliott KA, Kammesheidt A. High-resolution genomic profiling of chromosomal abnormalities in human stem cells using the 135K StemArray. Stem Cells Int. 2012;2012:431534.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pappas JJ, Toulouse A, Bradley WE. A modified protocol for bisulfite genomic sequencing of difficult samples. Biol Proced Online. 2009;11:99–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guenther MG, Frampton GM, Soldner F, et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell. 2010;7(2):249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kiedrowski LA, Raca G, Laffin JJ, et al. DNA methylation assay for X-chromosome inactivation in female human iPS cells. Stem Cell Rev. 2011;7(4):969–75.

    Article  CAS  PubMed  Google Scholar 

  18. Muller FJ, Schuldt MB, Williams R, et al. A bioinformatic assay for pluripotency in human cells. Nat Methods. 2011;8(4):315–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boland MJ, Hazen JL, Nazor KL, et al. Generation of mice derived from induced pluripotent stem cells. J Vis Exp. 2012;69:e4003.

    Google Scholar 

  20. Kim HS, Oh SK, Park YB, et al. Methods for derivation of human embryonic stem cells. Stem Cells. 2005;23:1228–33.

    Article  PubMed  Google Scholar 

  21. Hasegawa K, Pomeroy JE, Pera MF. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell. 2010;6:521–31.

    Article  CAS  PubMed  Google Scholar 

  22. Rais Y, Zviran A, Geula S, et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013;502:65–70.

    Article  CAS  PubMed  Google Scholar 

  23. Di Stefano B, Sardina JL, van Oevelen C, et al. C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature. 2014;506:235–9.

    Article  PubMed  Google Scholar 

  24. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  25. Maherali N, Ahfeldt T, Rigamonti A, et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008;3(3):340–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seki T, Yuasa S, Oda M, et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell. 2010;7(1):11–4.

    Article  CAS  PubMed  Google Scholar 

  28. Somers A, Jean JC, Sommer CA, et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells. 2010;28(10):1728–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells. 2009;27(11):2667–74.

    Article  CAS  PubMed  Google Scholar 

  30. Mali P, Chou BK, Yen J, et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells. 2010;28(4):713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narsinh KH, Jia F, Robbins RC, et al. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc. 2011;6(1):78–88.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng L, Hansen NF, Zhao L, et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell. 2012;10(3):337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4(6):472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 2011;8(6):633–8.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Z, Jian J, Zhang X, et al. Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials. 2012;33(24):5821–31.

    Article  CAS  PubMed  Google Scholar 

  37. Lee KI, Lee SY, Hwang DY. Extracellular matrix-dependent generation of integration- and xeno-free iPS cells using a modified mRNA transfection method. Stem Cells Int. 2016;2016:6853081.

    PubMed  PubMed Central  Google Scholar 

  38. Ohmine S, Dietz AB, Deeds MC, et al. Induced pluripotent stem cells from GMP-grade hematopoietic progenitor cells and mononuclear myeloid cells. Stem Cell Res Ther. 2011;2:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lian X, Hsiao C, Wilson G, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109:E1848–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Olivier EN, Marenah L, McCahill A, et al. High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Transl Med. 2016;5(10):1394–405.

    Article  PubMed  PubMed Central  Google Scholar 

  41. DuZW CH, Liu H, et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun. 2015;6:6626.

    Article  Google Scholar 

  42. Krentz NA, Nian C, Lynn FC. TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm. PLoS One. 2014;9:e114275.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shetty DK, Inamdar MS. Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-20. Stem Cell Res. 2016;16:207–9.

    Article  CAS  PubMed  Google Scholar 

  45. Shetty DK, Inamdar MS. Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-39. Stem Cell Res. 2016;16:308–10.

    Article  CAS  PubMed  Google Scholar 

  46. Solomon S, Pitossi F, Rao MS. Banking on iPSC—is it doable and is it worthwhile. Stem Cell Rev. 2015;11:1–10.

    Article  CAS  PubMed  Google Scholar 

  47. Gourraud PA, Gilson L, Girard M, et al. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells. 2012;30:180–6.

    Article  CAS  PubMed  Google Scholar 

  48. Taylor CJ, Bolton EM, Pocock S, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:2019–25.

    Article  PubMed  Google Scholar 

  49. Andrews PW, Cavagnaro J, Deans R, et al. Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells. Nat Biotechnol. 2014;32:724–6.

    Article  CAS  PubMed  Google Scholar 

  50. Indian Genome Variation Consortium. Genetic landscape of the people of India: a canvas for disease gene exploration. J Genet. 2008;87:3–20.

    Article  Google Scholar 

  51. National Institute for Health and Care Excellence, UK. Fertility problems: assessment and treatment. Clinical guidelines 2013. London: National Institute for Health and Care Excellence, UK; 2013.

    Google Scholar 

  52. Mehta RH. Sourcing human embryos for embryonic stem cell lines: problems & perspectives. Indian J Med Res. 2014;140(Suppl):S106–11.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ronak K. Shetty, Ph.D., and Ms. Deeti Shetty, JNCASR, for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha S. Inamdar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wulligundam, P., Inamdar, M.S. (2017). To D(e)rive or Reverse: The Challenge and Choice of Pluripotent Stem Cells for Regenerative Medicine. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_6

Download citation

Publish with us

Policies and ethics