Skip to main content

Physeal Regeneration: From Bench to Bedside

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

Physeal injury leading to growth arrest in children is a problem requiring regenerative solutions to restore normal growth activity. This article touches on the structure and function of the growth plate, the injuries and the resultant growth plate arrests, methods of imaging and assessing growth arrest, and conventional treatment. The cell-based strategies for growth plate repair have been discussed in details including the methods of culture, control of differentiation and expansion, scaffolds, and bioreactors. Characterization and release criteria for chondrocytes for transplantation are also suggested. Finally, preclinical and clinical studies have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

GAG:

Glycosaminoglycan

GMP:

Good manufacturing practice

Ihh:

Indian hedgehog

PLGA:

Poly lactic-co-glycolic acid

PTHrP:

Parathyroid hormone-related protein

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  1. Caplan A. The cellular and molecular embryology of bone formation. Bone Miner Res. 1987;5:117.

    Google Scholar 

  2. Hunziker E, Schenk R, Cruz-Orive L. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg Am. 1987;69:162–73.

    Article  CAS  PubMed  Google Scholar 

  3. Gibson G. Active role of chondrocyte apoptosis in endochondral ossification. Microsc Res Tech. 1998;43:191–204.

    Article  CAS  PubMed  Google Scholar 

  4. Wilkins KE. The uniqueness of the young athlete: musculoskeletal injuries. Am J Sports Med. 1980;8:377–82.

    Article  CAS  PubMed  Google Scholar 

  5. Yanaguizawa M, Taberner GS, Aihara AY, et al. Imaging of growth plate injuries. Radiol Bras. 2008;41:199–204.

    Article  Google Scholar 

  6. Accadbled F, Foster BK. Management of growth plate injuries. In: Children’s orthopaedics and fractures. Springer; 2010. p. 687–99.

    Google Scholar 

  7. Chung R, Xian CJ. Recent research on the growth plate: mechanisms for growth plate injury repair and potential cell-based therapies for regeneration. J Mol Endocrinol. 2014;53:T45–61.

    Article  CAS  PubMed  Google Scholar 

  8. Ogden J. The evaluation and treatment of partial physeal arrest. J Bone Joint Surg Am. 1987;69:1297–302.

    Article  CAS  PubMed  Google Scholar 

  9. Peters W, Irving J, Letts M. Long-term effects of neonatal bone and joint infection on adjacent growth plates. J Pediatr Orthop. 1992;12:806–10.

    Article  CAS  PubMed  Google Scholar 

  10. Aroojis AJ, Johari AN. Epiphyseal separations after neonatal osteomyelitis and septic arthritis. J Pediatr Orthop. 2000;20:544–9.

    CAS  PubMed  Google Scholar 

  11. Ecklund K, Jaramillo D. Imaging of growth disturbance in children. Radiol Clin N Am. 2001;39:823–41.

    Article  CAS  PubMed  Google Scholar 

  12. Craig JG, Cramer KE, Cody DD, et al. Premature partial closure and other deformities of the growth plate: MR imaging and three-dimensional modeling. Radiology. 1999;210:835–43.

    Article  CAS  PubMed  Google Scholar 

  13. De Campo J, Boldt D. Computed tomography of partial growth plate arrest: initial experience. Skelet Radiol. 1986;15:526–9.

    Article  Google Scholar 

  14. Jaramillo D, Hoffer FA. Cartilaginous epiphysis and growth plate: normal and abnormal MR imaging findings. AJR Am J Roentgenol. 1992;158:1105–10.

    Article  CAS  PubMed  Google Scholar 

  15. Birch JG. Technique of partial physeal bar resection. Oper Tech Orthop. 1993;3:166–73.

    Article  Google Scholar 

  16. Siffert R. Lower limb-length discrepancy. J Bone Joint Surg Am. 1987;69:1100–6.

    Article  CAS  PubMed  Google Scholar 

  17. Limb lengthening and reconstruction surgery. In: Rozbruch SR, Ilizarov S, editors. CRC Press; 2006. isbn:1420014013 9781420014013.

    Google Scholar 

  18. Tomaszewski R, Bohosiewicz J, Gap A, et al. Autogenous cultured growth plate chondrocyte transplantation in the treatment of physeal injury in rabbits. Bone Joint Res. 2014;3:310–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Plánka L, Necas A, Srnec R, et al. Use of allogenic stem cells for the prevention of bone bridge formation in miniature pigs. Physiol Res. 2009;58:885–93.

    PubMed  Google Scholar 

  20. Planka L, Gal P, Kecova H, et al. Allogeneic and autogenous transplantations of MSCs in treatment of the physeal bone bridge in rabbits. BMC Biotechnol. 2008;8:1.

    Article  Google Scholar 

  21. McCarty RC, Xian CJ, Gronthos S, et al. Application of autologous bone marrow derived mesenchymal stem cells to an ovine model of growth plate cartilage injury. Open Orthop J. 2010;4:204–10. doi:10.2174/1874325001004010204.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Coleman RM, Schwartz Z, Boyan BD, et al. The therapeutic effect of bone marrow-derived stem cell implantation after epiphyseal plate injury is abrogated by chondrogenic predifferentiation. Tissue Eng Part A. 2012;19:475–83.

    Article  PubMed  Google Scholar 

  23. Chen F, Hui JH, Chan WK, et al. Cultured mesenchymal stem cell transfers in the treatment of partial growth arrest. J Pediatr Orthop. 2003;23:425–9.

    PubMed  Google Scholar 

  24. Mara CS, Sartori AR, Duarte AS, et al. Periosteum as a source of mesenchymal stem cells: the effects of TGF-β3 on chondrogenesis. Clinics. 2011;66:487–92.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Clark A. Growth plate regeneration using polymer-based scaffolds releasing growth factor. PhD thesis (2013) submitted in University of Kentucky.

    Google Scholar 

  26. Burdan F, Szumilo J, Korobowicz A, et al. Morphology and physiology of the epiphyseal growth plate. Folia Histochem Cytobiol. 2009;47:5–16.

    Article  PubMed  Google Scholar 

  27. Keene DR, Oxford JT, Morris NP. Ultrastructural localization of collagen types II, IX, and XI in the growth plate of human rib and fetal bovine epiphyseal cartilage: type XI collagen is restricted to thin fibrils. J Histochem Cytochem. 1995;43:967–79.

    Article  CAS  PubMed  Google Scholar 

  28. Yang L, Tsang KY, Tang HC, et al. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A. 2014;111:12097–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Andrade A, Chrysis D, Audi L, et al. Methods to study cartilage and bone development. Endocr Dev. 2011;21:52–66.

    Article  PubMed  Google Scholar 

  30. Ulijaszek J, editor. The Cambridge encyclopedia of human growth and development. Preece: Cambridge University Press; 1998. isbn:0-521-56046-2.

    Google Scholar 

  31. Camacho-Hübner C, Nilsson O, Sävendahl L. Cartilage and bone development and its disorders. Endocr Dev. 2011;21:32–48.

    Google Scholar 

  32. Marlovits S, Hombauer M, Truppe M, et al. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. Bone Joint J. 2004;86:286–95.

    Article  CAS  Google Scholar 

  33. Rajagopal K, Dutt V, Manickam AS, et al. Chondrocyte source for cartilage regeneration in an immature animal: is iliac apophysis a good alternative? Indian J Orthop. 2012;46:402.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hui JH, Li L, Teo Y-H, et al. Comparative study of the ability of mesenchymal stem cells derived from bone marrow, periosteum, and adipose tissue in treatment of partial growth arrest in rabbit. Tissue Eng. 2005;11:904–12.

    Article  CAS  PubMed  Google Scholar 

  35. Parsch D, Fellenberg J, Brümmendorf TH, et al. Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J Mol Med. 2004;82:49–55.

    Article  CAS  PubMed  Google Scholar 

  36. Tobita M, Ochi M, Uchio Y, et al. Treatment of growth plate injury with autogenous chondrocytes. Acta Orthop Scand. 2002;73:352–8.

    Article  PubMed  Google Scholar 

  37. Lee E, Chen F, Chan J, et al. Treatment of growth arrest by transfer of cultured chondrocytes into physeal defects. J Pediatr Orthop. 1998;18:155–60.

    CAS  PubMed  Google Scholar 

  38. Park JS, Ahn JI, Oh DI. Chondrocyte allograft transplantation for damaged growth plate reconstruction. Yonsei Med J. 1994;35:378–87.

    Article  CAS  PubMed  Google Scholar 

  39. Foster B, Hansen A, Gibson G, et al. Reimplantation of growth plate chondrocytes into growth plate defects in sheep. J Orthop Res. 1990;8:555–64.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida K, Higuchi C, Nakura A, et al. Treatment of partial growth arrest using an in vitro-generated scaffold-free tissue-engineered construct derived from rabbit synovial mesenchymal stem cells. J Pediatr Orthop. 2012;32:314–21.

    Article  PubMed  Google Scholar 

  41. Li L, Hui JHP, Goh JCH, et al. Chitin as a scaffold for mesenchymal stem cells transfers in the treatment of partial growth arrest. J Pediatr Orthop. 2004;24:205–10.

    Article  CAS  PubMed  Google Scholar 

  42. Lee G. Creating and growing body parts. Innovation. 2004;2(3).

    Google Scholar 

  43. Forsey RW, Tare R, Oreffo RO, et al. Perfusion bioreactor studies of chondrocyte growth in alginate–chitosan capsules. Biotechnol Appl Biochem. 2012;59:142–52.

    Article  CAS  PubMed  Google Scholar 

  44. Pazzano D, Mercier KA, Moran JM, et al. Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol Prog. 2000;16:893–6.

    Article  CAS  PubMed  Google Scholar 

  45. Johns D, Athanasiou KA. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage. Cell Tissue Res. 2008;333:439–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Cui X, Breitenkamp K, Lotz M, et al. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng. 2012;109:2357–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Schuh E, Hofmann S, Stok K, et al. Chondrocyte redifferentiation in 3D: the effect of adhesion site density and substrate elasticity. J Biomed Mater Res A. 2012;100:38–47.

    Article  PubMed  Google Scholar 

  48. Fuss M, Ehlers E-M, Russlies M, et al. Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions: a light, scanning and transmission electron microscopy study. Ann Anat. 2000;182:303–10.

    Article  CAS  PubMed  Google Scholar 

  49. Caron M, Emans P, Coolsen M, et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil. 2012;20:1170–8.

    Article  CAS  PubMed  Google Scholar 

  50. Ramesh S, Rajagopal K, Vaikkath D, et al. Enhanced encapsulation of chondrocytes within a chitosan/hyaluronic acid hydrogel: a new technique. Biotechnol Lett. 2014;36:1107–11.

    Article  CAS  PubMed  Google Scholar 

  51. Foldager CB, Gomoll AH, Lind M, et al. Cell seeding densities in autologous chondrocyte implantation techniques for cartilage repair. Cartilage. 2012;3:108–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Freyria A-M, Yang Y, Chajra H, et al. Optimization of dynamic culture conditions: effects on biosynthetic activities of chondrocytes grown in collagen sponges. Tissue Eng. 2005;11:674–84.

    Article  CAS  PubMed  Google Scholar 

  53. Murphy CL, Sambanis A. Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng. 2001;7:791–803.

    Article  CAS  PubMed  Google Scholar 

  54. Belluoccio D, Etich J, Rosenbaum S, et al. Sorting of growth plate chondrocytes allows the isolation and characterization of cells of a defined differentiation status. J Bone Miner Res. 2010;25:1267–81.

    Article  CAS  PubMed  Google Scholar 

  55. Hansen AL, Foster BK, Gibson GJ, et al. Growth-plate chondrocyte cultures for reimplantation into growth-plate defects in sheep: characterization of cultures. Clin Orthop Relat Res. 1990;256:286–98.

    Google Scholar 

  56. Lee G. Creating and growing body parts. Innovation 2001. http://www.innovationmagazine.com/innovation/vol02_03/vol02_03.shtml

Download references

Acknowledgments

Department of Biotechnology, Government of India, and Fluid research grant provided by Christian Medical College, Vellore for funding the preclinical and clinical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vrisha Madhuri M.S., M.Ch. (L’pool) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Madhuri, V., Rajagopal, K., Ramesh, S. (2017). Physeal Regeneration: From Bench to Bedside. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_27

Download citation

Publish with us

Policies and ethics