Skip to main content

Blood to Blood: A New Therapeutic Opportunity for Age-Related Diseases

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

Aging is a progressive accumulation of changes with time that are associated with loss of physiological integrity and impaired functions, responsible for ever-increasing susceptibility to diseases and vulnerability to death. It is one of the strongest risk factors for diseases due to decline in regenerative capacity. This regenerative failure has been linked to decline in systemic factors and elevation of pro-inflammatory cytokines that impede stem cell function and stem cell niche. Recently, heterochronic parabiosis involving surgical attachment of young and old animals sharing common vasculature has revealed that systemic environment has a profound effect on stem cell function and may restore regeneration process and even reverse human tissue aging. Circulatory growth factors from young animals have been shown to reverse age-related cardiac hypertrophy, increase neurogenesis and synapses, rejuvenate and re-modulate skin tissue and rejuvenate stem cell niche revealing a new therapeutic opportunity for aging and age-related diseases in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ASES:

American Shoulder and Elbow Surgeons score

CTRI:

Clinical Trials Registry of India

DFU:

Diabetes foot ulcer

GFC:

Growth factor concentrate

MSC:

Mesenchymal stem cells

PRTEE:

Patient-rated tennis elbow evaluation

RAWM:

Radial arm water maze

VAS:

Visual analogue score

References

  1. United Nation, Department of Economic and Social Welfare, Population Division. World Population Aging 2013, ST/ESA/SER, A/348; 2013.

    Google Scholar 

  2. Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmark of aging. Cell. 2013;153:1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kirkwood TB. Understanding the odd science of aging. Cell. 2005;120:437–47.

    Article  CAS  PubMed  Google Scholar 

  4. Jones DL, Rando TA. Emerging models and paradigms for stem cell ageing. Nat Cell Biol. 2011;13:506–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci. 2006;7:30–40.

    Article  CAS  PubMed  Google Scholar 

  6. Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol. 2007;8:703–13.

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, et al. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain. 2016;139(Pt 3):922–36. doi:10.1093/brain/awv404.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lavasani M, Robinson AR, Lu A, et al. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun. 2012;3:608. doi:10.1038/ncomms1611.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–4.

    Article  CAS  PubMed  Google Scholar 

  10. Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heissig B, Ohki Y, Sato Y, et al. A role for niches in hematopoietic cell development. Hematology. 2005;10(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  12. Nekanti U, Mohanty L, Venugopal P, et al. Optimization and scale-up of Wharton’s jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res. 2010;5:244–54.

    Article  CAS  PubMed  Google Scholar 

  13. Pal R, Hanwate M, Jan M, Totey S. Phenotypic and functional comparison of optimum culture conditions for upscaling of bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med. 2009;3:163–74.

    Article  CAS  PubMed  Google Scholar 

  14. Govindasamy V, Ronald VS, Totey S, et al. Micromanipulation of culture niche permits long-term expansion of dental pulp stem cells—an economic and commercial angle. In Vitro Cell Dev Biol Anim. 2010;46:764–73.

    Article  PubMed  Google Scholar 

  15. Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol. 2011;193:257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26:2287–99.

    Article  PubMed  Google Scholar 

  17. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–13.

    Article  PubMed  Google Scholar 

  18. Oh J, Lee YD, Wagers AJ. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20:870–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeCarolis NA, Kirby ED, Wyss-Coray T, et al. The role of the microenvironmental niche in declining stem-cell functions associated with biological aging. Cold Spring Harb Perspect Med. 2015;5. pii:a025874. doi:10.1101/cshperspect.a025874.

  20. Conboy IM, Rando TA. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle. 2012;11:2260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60. doi:10.1146/annurev.physiol.010908.163145.

    Article  PubMed  Google Scholar 

  22. Zhou Z, Akinbiyi T, Xu L, et al. Tendon derived stem/progenitor cell aging: defective self-renewal and altered fate. Aging Cell. 2010;9:911–5. doi:10.1111/j.1474-9726.2010.00598.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829–48. doi:10.3727/096368915X689622. Epub 2015 Sep 29.

    Article  PubMed  Google Scholar 

  24. Nowbar AN, Mielewczik M, Karavassilis M, et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ. 2014;348:g2688. doi:10.1136/bmj.g2688.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abbott A. Doubts over heart stem cell therapy. Nature. 2014;509:15–6.

    Article  CAS  PubMed  Google Scholar 

  26. Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317:807–10. PMID:17690295. http://dx.doi.org/10.1126/science.1144090.

    Google Scholar 

  27. Sinha M, Jang YC, Oh J, Khong D, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344(6184):649–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344:630–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Villeda SA, Plambeck KE, Middeldorp J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20(6):659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shurin GV, Yurkovetsky ZR, Chatta GS, et al. Dynamic alteration of soluble serum biomarkers in healthy aging. Cytokine. 2007;39:123–9.

    Article  CAS  PubMed  Google Scholar 

  31. Toledano H, D’Alterio C, Czech B, et al. The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature. 2012;485(7400):605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Olson KA, Beatty AL, Heidecker B, et al. Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts. Eur Heart J. 2015;36(48):3426–34.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bitto A, Kaeberlein M. Rejuvenation: it’s in our blood. Cell Metab. 2014;20(1):2–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Di Mitri D, Azevedo RI, Henson SM, et al. Reversible senescence in human CD4+CD45RA+ CD27- memory T cells. J Immunol. 2011;187:2093–100.

    Article  PubMed  Google Scholar 

  35. Lapasset L, Milhavet O, Prieur A, et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 2011;25:2248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han J, Mistriotis P, Lei P, et al. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential. Stem Cells. 2012;30:2746–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mason JB, Cargill SL, Anderson GB, et al. Transplantation of young ovaries to old mice increased life span in transplant recipients. J Gerontol A Biol Sci Med Sci. 2009;64:1207–11.

    Article  PubMed  Google Scholar 

  38. Carlson BM, Faulkner JA. Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol. 1989;256:1262–6. PMID:2735398.

    Google Scholar 

  39. Conboy MJ, Conboy IM, Rando TA. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell. 2013;12(3):525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eggel A, Coray TW. Parabiosis for the study of age related chronic diseases. Swiss Med Wkly. 2014;144:w13914. doi:10.4414/smw.2014.13914.

    PubMed  PubMed Central  Google Scholar 

  41. Sherwood RI, Christensen JL, Weissman IL, et al. Determinants of skeletal muscle contributions from circulating cells, bone marrow cells, and hematopoietic stem cells. Stem Cells. 2004;22(7):1292–304.

    Article  PubMed  Google Scholar 

  42. McCay CM, Pope F, Lunsford W, et al. Parabiosis between old and young rats. Gerontologia. 1957;1:7–17.

    Article  CAS  PubMed  Google Scholar 

  43. Ludwig FC, Elashoff RM. Mortality in syngeneic rat parabionts of different chronological age. Trans N Y Acad Sci. 1972;34(7):582–7.

    Article  CAS  PubMed  Google Scholar 

  44. Blau HM, Cosgrove BD, Ho AT. The central role of muscle stem cells in regenerative failure with aging. Nat Med. 2015;21:854–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding HY, Ma HX. Significant roles of anti-aging protein klotho and fibroblast growth factor23 in cardiovascular disease. J Geriatr Cardiol. 2015;12(4):439–47.

    PubMed  PubMed Central  Google Scholar 

  46. Dai S, Zhang S, Guo Y, et al. C-reactive protein and atrial fibrillation in idiopathic dilated cardiomyopathy. Clin Cardiol. 2009;32(9):E45–50.

    Article  PubMed  Google Scholar 

  47. Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153(4):828–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McPherron AC. Through thick and thin: a circulating growth factor inhibits age-related cardiac hypertrophy. Circ Res. 2013;113(5):487–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harper SC, Brack A, MacDonnell S, et al. Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects. Circ Res. 2016;118:1143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salpeter SJ, Khalaileh A, Weinberg-Corem N, et al. Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes. 2013;62(8):2843–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baht GS, Silkstone D, Vi L, et al. Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin. Nat Commun. 2015;6:7131. doi:10.1038/ncomms8131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sevilla GP, Dhurat RS, Shetty G, et al. Safety and efficacy of growth factor concentrate in the treatment of nasolabial fold correction: split face pilot study. Indian J Dermatol. 2015;60(5):520. doi:10.4103/0019-5154.159628.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is thankful to the management of Kasiak Research and Aureostem Research for providing generous support. Their generosity was instrumental for the study accomplishment, and I appreciate it. The author is thankful to Dr. Gema Sevilla, Instituto Medico Laser, Madrid Spain; Dr. Rachita Dhurat, Lokmanya Tilak Municipal Medical College and Hospital, Sion, Mumbai, India; and Dr. Geetanjali Shetty, Goregaon, Mumbai, India, for participating in the clinical studies. The author also thanks IITB-Monash Research Academy; Indian Institute of Technology (IIT), Mumbai; and Invitrogen BioServices, Bangalore, India, for the analysis of blood-derived signalling factors. The author thanks all the supporting staff and technicians for the technical and scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Totey Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Totey, S. (2017). Blood to Blood: A New Therapeutic Opportunity for Age-Related Diseases. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_26

Download citation

Publish with us

Policies and ethics