Skip to main content

Cartilage Tissue Engineering: Scaffold, Cell, and Growth Factor-Based Strategies

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

The avascular, alymphatic, and aneural character of articular cartilage along with the reduced availability of chondrocytes/progenitors, its complex structure, and mechanics pose a major challenge for cartilage regeneration. State-of-the-art therapies for cartilage injuries can at best halt cartilage deterioration and are most often inadequate for promoting regeneration. The emerging field of tissue engineering has contributed significantly in regeneration of complex tissues including cartilage. The tissue engineering triads of scaffolds, cells, and growth factors have been investigated both independently and in combination for cartilage regeneration. This article focuses on the current developments revolving around these three components for the development of cartilage regenerative therapies. More specifically, we discuss about the influence of scaffold type, architecture, chemical/biochemical composition, and mechanical properties on chondrogenesis. Thereafter, different cell sources and types of growth factors that have been used for engineering cartilage tissue have been reviewed. Finally, the last section deals with various biomaterial-based approaches for controlled release of growth factors for cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADSC:

Adipose-derived stem cell

BMP:

Bone morphogenetic protein

ECM:

Extracellular matrix

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

EGF:

Epidermal growth factor

ESC:

Embryonic stem cell

FGF:

Fibroblast growth factor

GAG:

Glycosaminoglycan

HA:

Hydroxyapatite

hMSC:

Human mesenchymal stem cell

HRP:

Horse radish peroxidase

IGF:

Insulin-like growth factor

iPSC:

Induced pluripotent stem cell

LCST:

Lower critical solution temperature

MMP:

Matrix metalloproteinase

NHS:

N-Hydroxysuccinimide

PCL:

Polycaprolactone

PDGF:

Platelet-derived growth factor

pDNA:

Plasmid DNA

PEG:

Polyethylene glycol

PLGA:

Poly(lactide-co-glycolide)

PRP:

Platelet-rich plasma

PVA:

Polyvinyl alcohol

RGD:

Arginine-glycine-aspartate

sGAG:

Sulfated glycosaminoglycan

TGF:

Transforming growth factor

UV:

Ultra Violet

VEGF:

Vascular endothelial growth factor

YAP:

Yes-associated protein

References

  1. Mankin HJ, Mow VC, Buckwalter JA, et al. Articular cartilage structure, composition and function. In Buckwalter JA, Einhorn TA, Simon SR, editors. Orthopaedic basic science. 2nd ed. American Academy of Orthopaedic Surgeons (AAOS): 2000. p. 443–70.

    Google Scholar 

  2. Mollon B, Kandel R, Chahal J, et al. The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil. 2013;21:1824–33.

    Article  CAS  PubMed  Google Scholar 

  3. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60:243–62.

    Article  CAS  PubMed  Google Scholar 

  4. Bian L, Hou L, Tous E, et al. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials. 2013;34:413–21.

    Article  CAS  PubMed  Google Scholar 

  5. Feng Q, Zhu M, Wei K, et al. Cell-mediated degradation regulates human mesenchymal stem cell chondrogenesis and hypertrophy in MMP-sensitive hyaluronic acid hydrogels. PLoS One. 2014;9(6):e99587.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stenhamre H, Nannmark U, Lindahl A, et al. Influence of pore size on the redifferentiation potential of human articular chondrocytes in poly (urethane urea) scaffolds. J Tissue Eng Regen Med. 2011;5:578–88.

    Article  CAS  PubMed  Google Scholar 

  7. Matsiko A, Gleeson JP, O'Brien FJ. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Part A. 2014;21:486–97.

    Article  PubMed  Google Scholar 

  8. Arora A, Kothari A, Katti DS. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design. J Mech Behav Biomed Mater. 2015;51:169–83.

    Article  CAS  PubMed  Google Scholar 

  9. Noriega SE, Hasanova GI, Schneider MJ, et al. Effect of fiber diameter on the spreading, proliferation and differentiation of chondrocytes on electrospun chitosan matrices. Cells Tissues Organs. 2011;195:207–21.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schneider T, Kohl B, Sauter T, et al. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes. Clin Hemorheol Microcirc. 2012;52:325–36.

    PubMed  Google Scholar 

  11. Kwon HJ, Yasuda K, Ohmiya Y, et al. In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities. Acta Biomater. 2010;6:494–501.

    Article  CAS  PubMed  Google Scholar 

  12. Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials. 2006;27:4783–93.

    Article  CAS  PubMed  Google Scholar 

  13. Salinas CN, Cole BB, Kasko AM, et al. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly (ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue Eng. 2007;13:1025–34.

    Article  CAS  PubMed  Google Scholar 

  14. Jin R, Teixeira LSM, Dijkstra PJ, et al. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release. 2011;152:186–95.

    Article  CAS  PubMed  Google Scholar 

  15. Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  16. Schuh E, Kramer J, Rohwedel J, et al. Effect of matrix elasticity on the maintenance of the chondrogenic phenotype. Tissue Eng Part A. 2010;16:1281–90.

    Article  CAS  PubMed  Google Scholar 

  17. Vickers SM, Squitieri LS, Spector M. Effects of cross-linking type II collagen-gag scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation. Tissue Eng. 2006;12:1345–55.

    Article  CAS  PubMed  Google Scholar 

  18. Toh WS, Lim TC, Kurisawa M, et al. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33:3835–45.

    Article  CAS  PubMed  Google Scholar 

  19. Zhong W, Li Y, Li L, et al. YAP-mediated regulation of the chondrogenic phenotype in response to matrix elasticity. J Mol Histol. 2013;44:587–95.

    Article  CAS  PubMed  Google Scholar 

  20. Lum L, Elisseeff J. Injectable hydrogels for cartilage tissue engineering. In Ashammakhi N, Ferretti P, editors. Topics Tissue Eng. 2003;3:1–25.

    Google Scholar 

  21. Choi B, Kim S, Lin B, et al. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces. 2014;6:20110–21.

    Article  CAS  PubMed  Google Scholar 

  22. Lin H, Cheng AWM, Alexander PG, et al. Cartilage tissue engineering application of injectable gelatin hydrogel with in situ visible-light-activated gelation capability in both air and aqueous solution. Tissue Eng Part A. 2014;20:2402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tekin H, Sanchez JG, Tsinman T, et al. Thermoresponsive platforms for tissue engineering and regenerative medicine. AICHE J. 2011;57:3249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shive MS, Hoemann CD, Restrepo A, et al. BST-CarGel: in situ chondroinduction for cartilage repair. Oper Tech Orthop. 2006;16:271–8.

    Article  Google Scholar 

  25. Ren CD, Kurisawa M, Chung JE, et al. Liposomal delivery of horseradish peroxidase for thermally triggered injectable hyaluronic acid–tyramine hydrogel scaffolds. J Mater Chem B. 2015;3:4663–70.

    Article  CAS  Google Scholar 

  26. Teixeira LSM, Feijen J, van Blitterswijk CA, et al. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012;33:1281–90.

    Article  PubMed  Google Scholar 

  27. Zhang Y, Fan Z, Xu C, et al. Tough biohydrogels with interpenetrating network structure by bienzymatic crosslinking approach. Eur Polym J. 2015;72:717–25.

    Article  CAS  Google Scholar 

  28. Jin R, Lin C, Cao A. Enzyme-mediated fast injectable hydrogels based on chitosan–glycolic acid/tyrosine: preparation, characterization, and chondrocyte culture. Polym Chem. 2014;5:391–8.

    Article  CAS  Google Scholar 

  29. Cao L, Cao B, Lu C, et al. An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B. 2015;3:1268–80.

    Article  CAS  Google Scholar 

  30. Takahashi A, Suzuki Y, Suhara T, et al. In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry. Biomacromolecules. 2013;14:3581–8.

    Article  CAS  PubMed  Google Scholar 

  31. Yu F, Cao X, Li Y, et al. Diels–alder crosslinked HA/PEG hydrogels with high elasticity and fatigue resistance for cell encapsulation and articular cartilage tissue repair. Polym Chem. 2014;5:5116–23.

    Article  CAS  Google Scholar 

  32. DuRaine GD, Brown WE, Hu JC, et al. Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages. Ann Biomed Eng. 2015;43:543–54.

    Article  PubMed  Google Scholar 

  33. Bhumiratana S, Eton RE, Oungoulian SR, et al. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc Natl Acad Sci U S A. 2014;111:6940–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ofek G, Revell CM, Hu JC, et al. Matrix development in self-assembly of articular cartilage. PLoS One. 2008;3:e2795.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Blasioli DJ, Kim HJ, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006;27:4434–42.

    Article  CAS  PubMed  Google Scholar 

  36. Wolf F, Candrian C, Wendt D, et al. Cartilage tissue engineering using pre-aggregated human articular chondrocytes. Eur Cell Mater. 2008;16:92–9.

    Article  CAS  PubMed  Google Scholar 

  37. Isogai N, Kusuhara H, Ikada Y, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng. 2006;12:691–703.

    Article  CAS  PubMed  Google Scholar 

  38. Veronesi F, Maglio M, Tschon M, et al. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: state-of-the-art in in vivo studies. J Biomed Mater Res A. 2014;102:2448–66.

    Article  PubMed  Google Scholar 

  39. Williams CG, Kim TK, Taboas A, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 2003;9:679–88.

    Article  CAS  PubMed  Google Scholar 

  40. Kafienah W, Mistry S, Dickinson SC, et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum. 2007;56:177–87.

    Article  PubMed  Google Scholar 

  41. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347:613–27.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng D, Dan Y, Yang SH, et al. Controlled chondrogenesis from adipose-derived stem cells by recombinant transforming growth factor-β3 fusion protein in peptide scaffolds. Acta Biomater. 2015;11:191–203.

    Article  CAS  PubMed  Google Scholar 

  43. Kang H, Peng J, Lu S, et al. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med. 2014;8:442–53.

    Article  CAS  PubMed  Google Scholar 

  44. Diekman BO, Christoforou N, Willard VP, et al. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Nat Acad Sci U S A. 2012;109:19172–7.

    Article  CAS  Google Scholar 

  45. Ko JY, Kim KI, Park S, et al. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials. 2014;35:3571–81.

    Article  CAS  PubMed  Google Scholar 

  46. Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther. 2016;7:56.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qing C, Wei-ding C, Wei-min F. Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components. Braz J Med Biol Res. 2011;44:303–10.

    Article  PubMed  Google Scholar 

  48. Fischer J, Dickhut A, Rickert M, et al. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum. 2010;62:2696–706.

    Article  CAS  PubMed  Google Scholar 

  49. Yang YH, Lee AJ, Barabino GA. Coculture-driven mesenchymal stem cell-differentiated articular chondrocyte-like cells support neocartilage development. Stem Cells Transl Med. 2012;1:843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ko CY, Ku KL, Yang SR, et al. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL–PEG–PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med. 2016;10(10):E485–96.

    Article  CAS  PubMed  Google Scholar 

  51. Bekkers JE, Tsuchida AI, van Rijen MH, et al. Single-stage cell-based cartilage regeneration using a combination of chondrons and mesenchymal stromal cells comparison with microfracture. Am J Sports Med. 2013;41(9):2158–66. doi:10.1177/0363546513494181.

    Article  PubMed  Google Scholar 

  52. Mierisch CM, Cohen CB, Jordan LC, et al. Transforming growth factor-β in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy. 2002;18:892–900.

    Article  PubMed  Google Scholar 

  53. Park JS, Woo DG, Yang HN, et al. Chondrogenesis of human mesenchymal stem cells encapsulated in a hydrogel construct: neocartilage formation in animal models as both mice and rabbits. J Biomed Mater Res A. 2010;92:988–96.

    PubMed  Google Scholar 

  54. Noh MJ, Copeland RO, Yi Y, et al. Pre-clinical studies of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 (TGF-beta1). Cytotherapy. 2010;12:384–93.

    Article  CAS  PubMed  Google Scholar 

  55. Miljkovic N, Cooper G, Marra K. Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthr Cartil. 2008;16:1121–30.

    Article  CAS  PubMed  Google Scholar 

  56. Yang HS, La WG, Bhang SH, et al. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery. Tissue Eng Part A. 2011;17:1809–18.

    Article  CAS  PubMed  Google Scholar 

  57. Jung MR, Shim IK, Chung HJ, et al. Local BMP-7 release from a PLGA scaffolding-matrix for the repair of osteochondral defects in rabbits. J Control Release. 2012;162:485–91.

    Article  CAS  PubMed  Google Scholar 

  58. Schmidt M, Chen E, Lynch S. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr Cartil. 2006;14:403–12.

    Article  CAS  PubMed  Google Scholar 

  59. Longobardi L, O'Rear L, Aakula S, et al. Effect of IGF-1 in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-β signaling. J Bone Miner Res. 2006;21:626–36.

    Article  CAS  PubMed  Google Scholar 

  60. Madry H, Kaul G, Zurakowski D, et al. Cartilage constructs engineered from chondrocytes overexpressing IGF-1 improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater. 2013;25:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Solchaga LA, Penick K, Goldberg VM, et al. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng A. 2009;16:1009–19.

    Article  Google Scholar 

  62. Ishii I, Mizuta H, Sei A, et al. Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg. 2007;89:693–700.

    Article  CAS  Google Scholar 

  63. Im HJ, Muddasani P, Natarajan V, et al. Basic fibroblast growth factor stimulates matrix metalloproteinase-13 via the molecular cross-talk between the mitogen-activated protein kinases and protein kinase cδ pathways in human adult articular chondrocytes. J Biol Chem. 2007;282:11110–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ellman MB, An HS, Muddasani P, et al. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene. 2008;420:82–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sundman EA, Cole BJ, Karas V, et al. The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med. 2014;42:35–41.

    Article  PubMed  Google Scholar 

  66. Foster TE, Puskas BL, Mandelbaum BR, et al. Platelet-rich plasma from basic science to clinical applications. Am J Sports Med. 2009;37:2259–72.

    Article  PubMed  Google Scholar 

  67. Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62:489–96.

    Article  PubMed  Google Scholar 

  68. Mishra A, Tummala P, King A, et al. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C. 2009;15:431–5.

    Article  CAS  Google Scholar 

  69. Sun Y, Feng Y, Zhang C, et al. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop. 2010;34:589–97.

    Article  CAS  PubMed  Google Scholar 

  70. Lam J, Lu S, Kasper FK, et al. Strategies for controlled delivery of biologics for cartilage repair. Adv Drug Deliv Rev. 2015;84:123–34.

    Article  CAS  PubMed  Google Scholar 

  71. Park H, Temenoff JS, Tabata Y, et al. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J Biomed Mater Res A. 2009;88:889–97.

    Article  PubMed  Google Scholar 

  72. Holland T, Bodde T, Cuijpers V, et al. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthr Cartil. 2007;15:187–97.

    Article  CAS  PubMed  Google Scholar 

  73. Kim HJ, Kim YJ, Im GI. Is continuous treatment with transforming growth factor-beta necessary to induce chondrogenic differentiation in mesenchymal stem cells? Cells Tissues Organs. 2008;190:1–10.

    Article  PubMed  Google Scholar 

  74. Kopesky PW, Byun S, Vanderploeg EJ, et al. Sustained delivery of bioactive TGF-β1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells. J Biomed Mater Res A. 2014;102:1275–85.

    Article  PubMed  Google Scholar 

  75. Spiller KL, Liu Y, Holloway JL, et al. A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels: controlled release for cartilage tissue engineering. J Control Release. 2012;157:39–45.

    Article  CAS  PubMed  Google Scholar 

  76. Chen J, Wang Y, Chen C, et al. Exogenous heparan sulfate enhances the TGF-β 3-induced chondrogenesis in human mesenchymal stem cells by activating TGF-β/SMAD signaling. Stem Cells Int. 2015;2016

    Google Scholar 

  77. Jha AK, Mathur K, Svedlund FL, et al. Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. J Control Release. 2015;209:308–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Re’em T, Kaminer-Israeli Y, Ruvinov E, et al. Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials. 2012;33:751–61.

    Article  PubMed  Google Scholar 

  79. Almeida HV, Cunniffe GM, Vinardell T, et al. Coupling freshly isolated CD44+ infrapatellar fat pad-derived stromal cells with a TGF-β3 eluting cartilage ECM-derived scaffold as a single-stage strategy for promoting chondrogenesis. Adv Healthc Mater. 2015;4:1043–53.

    Article  CAS  PubMed  Google Scholar 

  80. Sridhar BV, Doyle NR, Randolph MA, et al. Covalently tethered TGF-β1 with encapsulated chondrocytes in a peg hydrogel system enhances extracellular matrix production. J Biomed Mater Res A. 2014;102:4464–72.

    PubMed  PubMed Central  Google Scholar 

  81. Bertolo A, Arcolino F, Capossela S, et al. Growth factors cross-linked to collagen microcarriers promote expansion and chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A. 2015;21:2618–28.

    Article  CAS  PubMed  Google Scholar 

  82. Brunger JM, Huynh NP, Guenther CM, et al. Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc Natl Acad Sci U S A. 2014;111:E798–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fernandez TG, Tierney EG, Cunniffe GM, et al. Gene delivery of TGF-β3 and BMP2 in an MSC-laden alginate hydrogel for articular cartilage and endochondral bone tissue engineering. Tissue Eng Part A. 2016;22:776–87.

    Article  Google Scholar 

  84. He CX, Zhang TY, Miao PH, et al. TGF-β1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector. Biotechnol Appl Biochem. 2012;59:163–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.A. and A.M. would like to acknowledge IIT Kanpur for fellowship. DSK would like to thank IIT-Kanpur, Department of Biotechnology (DBT), India, Department of Science and Technology (DST), India, and DST-Nanomission for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhirendra S. Katti Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Arora, A., Bhattacharjee, A., Mahajan, A., Katti, D.S. (2017). Cartilage Tissue Engineering: Scaffold, Cell, and Growth Factor-Based Strategies. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_14

Download citation

Publish with us

Policies and ethics