Skip to main content

Mechanism for the Plasma Reforming of Ethanol

  • Chapter
  • First Online:
Hydrogen Generation from Ethanol using Plasma Reforming Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 531 Accesses

Abstract

In conventional chemical processes, energy inputs in the form of heat energy and heats the reactor, and the reactions to the desired temperature resulting in high consumption. In non-thermal plasma forming, energy is put into the reactor in the form of electrical energy and then converted to a strong electric field. Therefore, most of the energy is delivered to the electrons and thus the electrons can keep the temperature and density high while the background gas molecules and the heavy particles maintain a relatively low temperature. On the one hand, this provides the non-thermal plasma environment with high activity and selectivity of certain reactions. In the plasma-catalytic reforming system, it guarantees low energy consumption and efficiency of non-thermal plasma technology. In the plasma-catalytic reforming system, the recombination of plasma can offer a reaction temperature for the catalytic reaction; besides, the plasma can also act directly on the catalyst to change the physical and chemical properties of the catalyst; at the same time, with the supplement of the plasma recombination, the catalyst can also cause a future transformation of the unreacted reforming substrates and the non-targeted products, which promotes the selectivity of the target product (H2). Based on the above considerations, this chapter will respectively analyze the microscopic procedure of single non-thermal arc plasma reforming and non-thermal arc plasma-catalytic reforming, which will help to understand the types and distribution of the reforming production and give a relative guideline to the direction of the improvement of the reforming process [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang DW. Design and application of miniaturized nonthermal arc plasma for hydrogen generation from ethanol reforming. Sun Yat-Sen University, 2014.

    Google Scholar 

  2. Levko DS, Tsymbalyuk AN, Shchedrin AI. Plasma kinetics of ethanol conversion in a glow discharge. Plasma Phys Rep. 2012;38(11):913–21.

    Article  Google Scholar 

  3. Itikawa Y, Mason N. Cross sections for electron collisions with water molecules. J Phys Chem Ref Data. 2005;34(1):1–22.

    Article  Google Scholar 

  4. Raizer YP. Gas discharge physics. J Atmos Sol-Terr Phy. 1993;55(10):1487.

    Google Scholar 

  5. Levko D, Shchedrin A, Chernyak V, Olszewski S, Nedybaliuk O. Plasma kinetics in ethanol/water/air mixture in a ‘tornado’-type electrical discharge. J Phys D Appl Phys. 2011;44(14):145206–18.

    Article  Google Scholar 

  6. Shirai T, Tabata T, Tawara H, Itikawa Y. Analytic cross sections for electron collisions with hydrocarbons: CH4, C2H6, C2H4, C2H2, C3H8, and C3H6. Atom Data Nucl Data. 2002;80(2):147–204.

    Article  Google Scholar 

  7. Kim T, Jo S, Song YH, Lee DH. Synergetic mechanism of methanol-steam reforming reaction in a catalytic reactor with electric discharges. Appl Energ. 2014;113(1):1692–9.

    Article  Google Scholar 

  8. Wang WJ, Zhu CY, Cao YY. DFT study on pathways of steam reforming of ethanol under cold plasma conditions for hydrogen generation. Int J Hydrogen Energ. 2010;35(5):1951–6.

    Article  Google Scholar 

  9. Cao XL. Study on ethanol conversion with dielectric-barrier discharge. TianJin University, 2009.

    Google Scholar 

  10. Futamura S, Kabashima H. Effects of reactor type and voltage properties in methanol reforming with nonthermal plasma. Ieee T Ind Appl. 2004;40(6):1459–66.

    Article  Google Scholar 

  11. Yan ZC, Chen L, Wang HL. Hydrogen generation by glow discharge plasma electrolysis of ethanol solutions. J Phys D Appl Phys. 2008;41(15):1525–8.

    Google Scholar 

  12. Zhou ZP. Reforming of methane for hydrogen production via non-equilibrium plasma. University of Science and Technology of China, 2012.

    Google Scholar 

  13. Chen HL, Lee HM, Chen SH, Chao Y, Chang MB. Review of plasma catalysis on hydrocarbon reforming for hydrogen production—Interaction, integration, and prospects. Appl Catal B-Environ. 2008;85(1):1–9.

    Google Scholar 

  14. Nozaki T, Muto N, Kado S, Okazaki K. Dissociation of vibrationally excited methane on Ni catalyst—Part 1. Application to methane steam reforming. Catal Today. 2004;89(1–2):57–65.

    Article  Google Scholar 

  15. van de Meerakker SYT, Vanhaecke N, van der Loo MPJ, Groenenboom GC, Meijer G. Direct measurement of the radiative lifetime of vibrationally excited OH radicals. Phys Rev Lett. 2005;95(1):13003–200.

    Article  Google Scholar 

  16. Nozaki T, Tsukijihara H, Fukui W, Okazaki K. Kinetic analysis of the catalyst and nonthermal plasma hybrid reaction for methane steam reforming. Energ Fuel. 2007;21(5):2525–30.

    Article  Google Scholar 

  17. Hammer T, Kappes T, Baldauf M. Plasma catalytic hybrid processes: Gas discharge initiation and plasma activation of catalytic processes. Catal Today. 2004;89(1–2):5–14.

    Article  Google Scholar 

  18. Baulch DL, Bowman CT, Cobos CJ, Cox RA, Just T, Kerr JA, Frank P, Hayman G, Murrells T, Pilling MJ, Troe J, Walker RW, Warnatz J. Evaluated kinetic data for combustion modeling: Supplement II. J Phys Chem Ref Data. 2005;34(3):757–1397.

    Article  Google Scholar 

  19. Tsyganov D, Bundaleska N, Tatarova E, Ferreira CM. Ethanol reforming into hydrogen-rich gas applying microwave ‘tornado’-type plasma. Int J Hydrogen Energ. 2013;38(34):14512–30.

    Article  Google Scholar 

  20. Marinov N, Malte P. Ethylene oxidation in a well-stirred reactor. Int J Chem Kinet. 1995;27(10):957–86.

    Article  Google Scholar 

  21. Marinov N, Pitz W, Westbrook C, Vincitore A, Castaldi M, Senkan S. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame. Combust Flame. 1998;114(1–2):192–213.

    Article  Google Scholar 

  22. Marinov NM. A detailed chemical kinetic model for high temperature ethanol oxidation. Int J Chem Kinet. 1999;31(31):183–220.

    Article  Google Scholar 

  23. GRI-Mech Version 3.0 7/30/99 http://www.gri.org.

  24. Tsang W, Hampson R. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J Phys Chem Ref Data. 1986;15(3):1087–1279.

    Google Scholar 

  25. Golden DM. The Reaction OH + C2H4: An example of rotational channel switching. J Phys Chem A. 2012;116(17):4259–66.

    Article  Google Scholar 

  26. Mattos LV, Jacobs G, Davis BH, Noronha FB. Production of hydrogen from ethanol: Review of reaction mechanism and catalyst deactivation. Chem Rev. 2012;112(7):4094–123.

    Article  Google Scholar 

  27. Li HX. Design, characteristics and application of non-thermal Laval nozzle arc plasma reactor for hydrogen production of bio-ethanol reforming. Sun Yat-Sen University, 2012.

    Google Scholar 

  28. Wang YF, Tsai CH, Chang WY, Kuo YM. Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor. Int J Hydrogen Energ. 2010;35(1):135–40.

    Article  Google Scholar 

  29. Bundaleska N, Tsyganov D, Tatarova E, Dias FM, Ferreira CM. Steam reforming of ethanol into hydrogen-rich gas using microwave Ar/water “tornado”-Type plasma. Int J Hydrogen Energ. 2014;39(11):5663–70.

    Article  Google Scholar 

  30. Kim DJ, Choi Y, Kim KS. Effects of process variables on NOx conversion by pulsed corona discharge process. Plasma Chem Plasma P. 2001;21(4):625–650.

    Google Scholar 

  31. Bian WJ, Song XH, Shi JW, Yin XL. Nitrogen fixed into HNO3 by pulsed high voltage discharge. J Electrostat. 2012;70(3):317–26.

    Article  Google Scholar 

  32. Jolibois J, Takashima K, Mizuno A. Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: NOx removal. J Electrostat. 2012;70(3):300–8.

    Article  Google Scholar 

  33. Shi JW. Study on nitrogen fixation into water by the technique of pulsed high-voltage discharge plasma and the mechanism. Suzhou University, 2010.

    Google Scholar 

  34. Li K, Tang XL, Yi HH, Ning P, Ye ZQ, Kang DJ, Song JH. Non-thermal plasma assisted catalytic oxidation NO over Mn–Ni–Ox catalysts at low-temperature. Adv Mater Res-Switz. 2012;383–390:3092–8.

    Google Scholar 

  35. Nagayama E, Imura T, Nfizuno A. Plasma-catalytic combustion system for VOC removal. 25th ICPIG international conference on phenomena in ionized gases, 2001;104:109–110.

    Google Scholar 

  36. Goujard V, Tatibouet JM, Batiot-Dupeyrat C. Influence of the plasma power supply nature on the plasma-catalyst synergism for the carbon dioxide reforming of methane. Ieee T Plasma Sci. 2009;37(12):2342–6.

    Article  Google Scholar 

  37. Zhang YP, Zhu XL, Pan YX, Liu CJ. Improvement of coke resistance performance of Ni-Based catalysts in methane reforming via glow discharge plasma treatment. Chinese J Catal. 2008;29(10):1058–66.

    Google Scholar 

  38. Haryanto A, Fernando S, Murali N, Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energ Fuel. 2005;19(5):2098–106.

    Article  Google Scholar 

  39. Zhang CX, Li SR, Wu GW, Huang ZQ, Han ZP, Wang T, Gong JL. Steam reforming of ethanol over skeletal Ni-based catalysts: A temperature programmed desorption and kinetic study. AIChE J. 2014;60(2):635–44.

    Article  Google Scholar 

  40. Comas J, Marino F, Laborde M, Amadeo N. Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chem Eng J. 2004;98(1–2):61–8.

    Article  Google Scholar 

  41. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA. High efficiency steam reforming of ethanol by cobalt-based catalysts. J Power Sources. 2004;134(1):27–32.

    Article  Google Scholar 

  42. Wu YJ, Santos JC, Li P, Yu JG, Cunha AF, Rodrigues AE. Simplified kinetic model for steam reforming of ethanol on a Ni/Al2O3 catalyst. Can J Chem Eng. 2014;92(1):116–30.

    Article  Google Scholar 

  43. Fatsikostas AN, Verykios XE. Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal. 2004;225(2):439–52.

    Article  Google Scholar 

  44. Fierro V, Akdim O, Provendier H, Mirodatos C. Ethanol oxidative steam reforming over Ni-based catalysts. J Power Sources. 2005;145(2):659–66.

    Article  Google Scholar 

  45. Diagne C, Idriss H, Kiennemann A. Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts. Catal Commun, 2002;3(12):565–571(7).

    Google Scholar 

  46. Roy B, Martinez U, Loganathan K, Datye AK, Leclerc CA. Effect of preparation methods on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: Part I—catalytic activity. Int J Hydrogen Energ. 2012;37(10):8143–53.

    Article  Google Scholar 

  47. Roland U, Holzer F, Kopinke ED. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of gamma-Al2O3. Appl Catal B-Environ. 2005;58(3–4):217–226.

    Google Scholar 

  48. Rico VJ, Hueso JL, Cotrino J, Gallardo V, Sarmiento B, Brey JJ, González-Elipe AR. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures. Chem Commun. 2009;41(41):6192–4.

    Article  Google Scholar 

  49. Krawczyk K, Mlotek M, Ulejczyk B, Schmidt-Szalowski K. Methane conversion with carbon dioxide in plasma-catalytic system. Fuel. 2014;117(1):608–17.

    Article  Google Scholar 

  50. El-Saftawy AA, Elfalaky A, Ragheb MS, Zakhary SG. Electron beam induced surface modifications of PET film. Radiat Phys Chem. 2014;102:96–102.

    Google Scholar 

  51. Skacelova D, Stupavska M, St’ahel P, Cernak M. Modification of (111) and (100) silicon in atmospheric pressure plasma. Appl Surf Sci. 2014;312(3):203–7.

    Article  Google Scholar 

  52. Hou ZY, Yashima T. Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Appl Catal a-Gen. 2004;261(2):205–209.

    Google Scholar 

  53. Rahemi N, Haghighi M, Babaluo AA, Jafari MF. Syngas production via CO2 reforming of methane over plasma assisted synthesized Ni–Co/Al2O3–ZrO2 nanocatalysts with different Ni-loadings. Int J Energ Res. 2014;38(6):765–79.

    Article  Google Scholar 

  54. Cheng DG, Zhu XL, Ben YH, He F, Cui L, Liu CJ. Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma. Catal Today. 2006;115(1):205–10.

    Article  Google Scholar 

  55. Estifaee P, Haghighi M, Babaluo AA, Rahemi N, Jafari MF. The beneficial use of non-thermal plasma in synthesis of Ni/Al2O3–MgO nanocatalyst used in hydrogen production from reforming of CH4/CO2 greenhouse gases. J Power Sources. 2014;257(3):364–73.

    Article  Google Scholar 

  56. Liu GH, Li YL, Chu W, Shi XY, Dai XY, Yin YX. Plasma-assisted preparation of Ni/SiO2 catalyst using atmospheric high frequency cold plasma jet. Catal Commun. 2008;9(6):1087–91.

    Article  Google Scholar 

  57. Wang ZJ, Zhao Y, Cui L, Du H, Yao P, Liu CJ. CO2 reforming of methane over argon plasma reduced Rh/Al2O3 catalyst: a case study of alternative catalyst reduction via non-hydrogen plasmas. Green Chem. 2007;9(6):554–9.

    Article  Google Scholar 

  58. Yu KL, Liu CJ, Zhang YP, He F, Zhu XL, Eliasson B. The preparation and characterization of highly dispersed PdO over alumina for low-temperature combustion of methane. Plasma Chem Plasma P. 2004;24(3):393–403.

    Google Scholar 

  59. Zou JJ, Liu CJ, Zhang YP. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment. Langmuir. 2006;22(5):2334–9.

    Article  Google Scholar 

  60. Pribytkov AS, Baeva GN, Telegina NS, Tarasov AL, Stakheev AY, Tel’nov AV, Golubeva VN. Effect of electron irradiation on the catalytic properties of supported Pd catalysts. Kinet Catal. 2006;47(5):765–769.

    Google Scholar 

  61. Jun J, Kim JC, Shin JH, Lee KW, Baek YS. Effect of electron beam irradiation on CO2 reforming of methane over Ni/Al2O3 catalysts. Radiat Phys Chem. 2004;71(6):1095–101.

    Article  Google Scholar 

  62. Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Khorram S. Non-thermal plasma assisted synthesis and physicochemical characterizations of Co and Cu doped Ni/Al2O3 nanocatalysts used for dry reforming of methane. Int J Hydrogen Energ. 2013;38(36):16048–61.

    Article  Google Scholar 

  63. Xu Z, Li YM, Zhang JY, Chang L, Zhou RQ, Duan ZT. Bound-state Ni species—A superior form in Ni–based catalyst for CH4/CO2 reforming. Appl Catal a-Gen, 2001;210(1–2):45–53.

    Google Scholar 

  64. Sehested J, Gelten JAP, Remediakis IN, Bengaard H, Norskov JK. Sintering of nickel steam-reforming catalysts: Effects of temperature and steam and hydrogen pressures. J Catal. 2004;223(2):432–43.

    Article  Google Scholar 

  65. Sekine Y, Haraguchi M, Tomioka M, Matsukata M, Kikuchi E. Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field. J Phys Chem A. 2010;114(11):3824–33.

    Article  Google Scholar 

  66. Skrzypek J, Sloczynski S, Ledakowicz S. Methanol synthesis. Warsaw: Polish Scientific Publishers; 1994.

    Google Scholar 

  67. Halonen L, Bernasek SL, Nesbitt DJ. Reactivity of vibrationally excited methane on nickel surfaces. J Chem Phys. 2001;115(12):5611–9.

    Article  Google Scholar 

  68. Schmid MP, Maroni P, Beck RD, Rizzo TR. Molecular-beam/surface-science apparatus for state-resolved chemisorption studies using pulsed-laser preparation. Rev Sci Instrum. 2003;74(9):4110–20.

    Article  Google Scholar 

  69. Beck RD, Maroni P, Papageorgopoulos DC, Dang TT, Schmid MP, Rizzo TR. Vibrational mode-specific reaction of methane on a nickel surface. Science. 2003;302(5642):98–100.

    Article  Google Scholar 

  70. Nishiguchi T, Matsumoto T, Kanai H, Utani K, Matsumura Y, Shen WJ, Imamura S. Catalytic steam reforming of ethanol to produce hydrogen and acetone. Appl Catal A-Gen. 2005;279(1):273–7.

    Article  Google Scholar 

  71. Aupretre F, Descorme C, Duprez D. Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal Commun. 2002;3(6):263–7.

    Article  Google Scholar 

  72. Kim SS, Lee H, Na BK, Song HK. Plasma-assisted reduction of supported metal catalyst using atmospheric dielectric-barrier discharge. Catal Today. 2004;89(1–2):193–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianHua Yan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Zhejiang University Press, Hangzhou and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yan, J., Du, C. (2017). Mechanism for the Plasma Reforming of Ethanol. In: Hydrogen Generation from Ethanol using Plasma Reforming Technology. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3659-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3659-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3658-3

  • Online ISBN: 978-981-10-3659-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics